2019.11.07考试解题报告
总结
期望得分:(50 + 20 + 0 = 70)
实际得分:(50 + 5 + 0 = 55)
大神(zhx):考试要先打暴力.
于是我困在(T2)的(20)分暴力中无法自拔。。调(T2)暴力花了一个小时……其实吧。。我想写(T3),然而连怎么建这棵树都不会,所以就肝(T2)的(20)分一直到死。。(T1)是个沙比题,人均(100)分,这场考试人均(100+),我就是倒着数的那个。。心里满是失落,又实在不会这些题。。没救了
思路&&代码
T1
(50)分:
直接(n^2)暴力找度为(1)的点,每次找到就将这个点和它连边的点度都减(1),然后把答案存下来最后输出(代码中的(sub1))
另外的(10)分:
因为保证了(u==1),所以我们可以直接输出(n-2)个(1)
(100)分:
考虑用一个优先队列,把度为(1)的结点的编号放入队列中,保证每次取出的编号最小,然后直接枚举这些点的连边,让连边的点度数(--),如果此时度数变为(1)则入队,如果此时度数大于等于(1)则输出这个点,这样就做完了
#include <queue>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int A = 5e5 + 11;
const int B = 1e6 + 11;
inline int read() {
char c = getchar(); int x = 0, f = 1;
for( ; !isdigit(c); c = getchar()) if(c == '-') f = -1;
for( ; isdigit(c); c = getchar()) x = (x << 3) + (x << 1) + (c ^ 48);
return x * f;
}
int n, m;
struct node { int to, nxt; } e[A];
bool flag = 1;
int cnt = 0, tot = 0, head[A], du[A], ans[A], vis[A];
priority_queue <int, vector<int>, greater<int> > Q;
inline void add(int from, int to) {
e[++cnt].to = to;
e[cnt].nxt = head[from];
head[from] = cnt;
}
namespace sub1 {
void solve(int id) {
vis[id] = 1;
int to = e[head[id]].to;
if(!vis[to]) {
du[to]--; if(du[to] == 0) vis[to] = 1;
ans[++tot] = to; head[id] = e[head[id]].nxt;
} else {
while(vis[to] && to != 0) {
head[id] = e[head[id]].nxt;
to = e[head[id]].to;
}
ans[++tot] = to; if(du[to] == 0) vis[to] = 1;
du[to]--; head[id] = e[head[id]].nxt;
}
return;
}
void Main() {
vis[0] = 1;
for(int i = 1; i <= n - 2; i++)
for(int j = 1; j <= n; j++)
if(du[j] == 1) {
du[j]--;
solve(j);
break;
}
for(int i = 1; i <= tot; i++) cout << ans[i] << " ";
return;
}
}
int main() {
freopen("prufer.in", "r", stdin);
freopen("prufer.out", "w", stdout);
n = read();
for(int i = 1, u, v; i < n; i++) {
u = read(), v = read();
add(u, v), add(v, u);
if(u != 1) flag = 0;
du[u]++, du[v]++;
}
if(n <= 3000) return sub1::Main(), 0;
if(flag) {
cout << 1;
for(int i = 2; i <= n - 2; i++) cout << " 1";
puts("");
return 0;
}
for(int i = 1; i <= n; i++) if(du[i] == 1) Q.push(i);
for(int i = 1; i <= n; i++) {
int u = Q.top(); Q.pop();
for(int j = head[u]; j; j = e[j].nxt) {
int to = e[j].to;
du[to]--;
if(du[to] == 1) Q.push(to);
if(du[to] >= 1) cout << to << " ";
}
}
puts("");
return 0;
}
/*
6
1 3
1 5
3 2
3 6
5 4
3 5 1 3
*/
T2
(20)分:
暴搜,只能从左往右搜,所以记录一下上次用的是哪一个,这次枚举直接从上次用的下一个开始枚举,保证从左往右
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define int long long
using namespace std;
const int A = 1e5 + 11;
const int B = 1e6 + 11;
const int mod = 1e9 + 7;
inline int read() {
char c = getchar();
int x = 0, f = 1;
for( ; !isdigit(c); c = getchar()) if(c == '-') f = -1;
for( ; isdigit(c); c = getchar()) x = (x << 3) + (x << 1) + (c ^ 48);
return x * f;
}
int n, m, ans, vis[A], a[A];
char s[A];
int c[4000][4000];
void dfs(int cnt, int last) {
if(cnt > n + 1) return;
if((cnt - 1) % 2 == 0 && cnt - 1 != 0) {
int now = cnt - 1;
int zuo = 0, you = 0, cao = 0;
for(int i = 1; i <= now / 2; i++) {
if(a[i] == 2) {
cao = 1;
break;
}
if(a[i] == 1) zuo++;
}
for(int i = now / 2 + 1; i <= now; i++) {
if(a[i] == 1) {
cao = 1;
break;
}
if(a[i] == 2) you++;
}
if(!cao && zuo == you && zuo + you == now) ans++;
}
for(int i = last + 1; i <= n; i++) {
if(!vis[i]) {
vis[i] = 1;
a[cnt] = (s[i] == '(' ? 1: 2);
dfs(cnt + 1, i);
vis[i] = 0;
}
}
}
signed main() {
freopen("beauty.in", "r", stdin);
freopen("beauty.out", "w", stdout);
scanf("%s", s + 1);
n = strlen(s + 1);
if(n <= 20) {
dfs(1, 0);
cout << ans % mod << '
';
return 0;
}
return 0;
}
(50)分:
考虑每个左括号,不包括他的,左边有多少个左括号,右边有多少个右括号,就可以得出,对于每一个左括号的位置,都有:((x)是指左边不包括这个左括号有多少个左括号,(y)是右边有多少个右括号)
然后就有(50)了
(100)分:
考虑直接换一种想法,我们枚举包括这个位置的左括号的,左边有多少个左括号,右边有多少个右括号,这个位置必须选,那么就能得出
但是这样就会把不选这个位置的情况算上,所以还要减去
就得出了
有一个辅助式子
所以上面的式子就能写成
就等于
对于每个左括号的位置,我们都这样计算一遍,然后就做完了
时间复杂度(O(n))
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define int long long
using namespace std;
const int A = 5e5 + 11;
const int B = 1e6 + 11;
const int mod = 1e9 + 7;
inline int read() {
char c = getchar(); int x = 0, f = 1;
for( ; !isdigit(c); c = getchar()) if(c == '-') f = -1;
for( ; isdigit(c); c = getchar()) x = (x << 3) + (x << 1) + (c ^ 48);
return x * f;
}
int n, m, a[A], b[A], fac[A], inv[A], ans; //a[i]左边的左括号个数,b[i]右边的右括号个数
char s[A];
int power(int a, int b, int res = 1) {
while(b) {
if(b & 1) res = res * a % mod;
a = a * a % mod; b >>= 1;
} return res;
}
void prepare(int n) {
fac[0] = 1;
for(int i = 1; i <= n; i++) fac[i] = fac[i - 1] * i % mod;
inv[n] = power(fac[n], mod - 2);
for(int i = n - 1; i >= 0; i--) inv[i] = inv[i + 1] * (i + 1) % mod;
return;
}
int C(int n, int m) {
if(n < m) return 0;
return fac[n] % mod * inv[n - m] % mod * inv[m] % mod;
}
signed main() {
scanf("%s", s + 1);
n = strlen(s + 1);
prepare(n * 2);
for(int i = n; i >= 1; i--)
if(s[i] == ')') b[i] = b[i + 1] + 1;
else b[i] = b[i + 1];
for(int i = 1; i <= n; i++) {
if(s[i] == '(') a[i] = a[i - 1] + 1;
else a[i] = a[i - 1];
}
for(int i = 1; i <= n; i++) {
if(s[i] == ')') continue;
int x = a[i], y = b[i];
ans += C(x + y, x) - C(x + y - 1, x - 1) , ans %= mod;
}
ans = (ans % mod + mod) % mod;
cout << ans << '
';
return 0;
}
T3
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<queue>
#include<vector>
using namespace std;
//var
int n,m;
//Trie
struct Tree {
int ch[26];
int fail;
} T[400010];
int tot;
int pos[400010];//index->node
void insert(char* st,int num) {
int now=0,len=strlen(st);
for(int i=0; i<len; i++) {
if(!T[now].ch[st[i]-'a'])
T[now].ch[st[i]-'a']=++tot;
now=T[now].ch[st[i]-'a'];
}
pos[num]=now;
return ;
}
//fail-tree
vector<int>son[400010];
//AC Automaton
queue<int>q;
void bfs() {
for(int i=0; i<26; i++)
if(T[0].ch[i]) {
q.push(T[0].ch[i]);
T[T[0].ch[i]].fail=0;
}
while(!q.empty()) {
int u=q.front();
q.pop();
son[T[u].fail].push_back(u);
for(int i=0; i<26; i++)
if(T[u].ch[i]) {
T[T[u].ch[i]].fail=T[T[u].fail].ch[i];
q.push(T[u].ch[i]);
} else T[u].ch[i]=T[T[u].fail].ch[i];
}
return ;
}
//get dfn
int dfn[400010],to[400010],now;
//vector<char>Vec;
void dfs(int u) {
dfn[u]=++now;
for(int i=0; i<son[u].size(); i++)
dfs(son[u][i]);
to[u]=now;
return ;
}
/*
//for debug
void _dfs(int u)
{
printf("%d: str=",u);
for(int i=0;i<Vec.size();i++)
printf("%c",Vec[i]);
printf("
");
for(int i=0;i<26;i++)
if(T[u].ch[i]){
Vec.push_back(i+'a');
_dfs(T[u].ch[i]);
Vec.pop_back();
}
return ;
}*/
//Fenwick
int c[400010];
int lowbit(int x) {
return x&(-x);
}
void add(int x,int y) {
for(; x<=tot+1; x+=lowbit(x))
c[x]+=y;
return ;
}
int query(int x) {
int ans=0;
for(; x; x-=lowbit(x))
ans+=c[x];
return ans;
}
//Song-Tree
vector<pair<int,char> >S[400010];
//queries
vector<int>qnum[400010];
//answers
int ans[400010];
//REAL-DFS
void DFS(int u,int state) {
add(dfn[state],1);
for(int i=0; i<qnum[u].size(); i++) {
int v=qnum[u][i];
ans[v]=query(to[pos[v]])-query(dfn[pos[v]]-1);
}
for(int i=0; i<S[u].size(); i++) {
int v=S[u][i].first;
int C=S[u][i].second-'a';
DFS(v,T[state].ch[C]);
}
add(dfn[state],-1);
return ;
}
char str[400010];
int main() {
freopen("string.in","r",stdin);
freopen("string.out","w",stdout);
scanf("%d",&n);
for(int i=1; i<=n; i++) {
int op,fa;
scanf("%d",&op);
if(op==1)fa=0;
else scanf("%d",&fa);
scanf("%s",str);
S[fa].push_back(make_pair(i,str[0]));
}
scanf("%d",&m);
for(int i=1; i<=m; i++) {
int u;
scanf("%d",&u);
scanf("%s",str);
insert(str,i);
qnum[u].push_back(i);
}
// _dfs(0);
bfs();
dfs(0);
DFS(0,0);
// for(int i=1;i<=tot;i++)
// printf("fail[%d]=%d
",i,T[i].fail);
for(int i=1; i<=m; i++)
printf("%d
",ans[i]);
// for(int i=1;i<=m;i++)
// printf("%d ",pos[i]);
// printf("
");
return 0;
}