• 同余学习笔记


    同余学习笔记

    声明:由于本蒟蒻太菜了,所以有些东西是从别的书上弄来的,具体请见《初等数论》、《基础数论》等。

    写在前面

    同余是个啥??

    在日常生活中,我们所注意的常常不是某些整数,而是这些数用某一固定的数去除所得到的余数,例如我们问现在是几点钟,就是用(24)去除某一个总的时数所得的余数,又如问现在是星期几,就是问用(7)去除某一个总的天数所得的余数,同是几点钟或同为星期几,常常在生活中有同样的意义,这样就在数学中产生了同余的概念

    同余式不仅相当有趣,而且应用广泛,以后就要经常用到。任何尚未真正掌握同余式的人,都不能自称熟悉数论,所以,同余是数论里非常重要的一部分内容,作为一个蒟蒻,一定要好好学,不然你死都不知道自己怎么死的(LMC的经典语录)

    在这里,我们将会写一些关于同余的比较简单的东西,一起来看看吧!

    定义

    (a,b)为两个整数,且他们的差(a-b)能被某个自然数(m)所整除(即(mvert(a-b))),则称(a)就模(m)来说同余于(b),或者说(a)(b)关于模(m)同余,记为(aequiv b(mod m))。它意味着:(a-b=mast k)(k)为某一个整数)

    性质

    对于整数(a,b,c),和自然数(m),对模(m)同余具有以下一些性质:
    1.自反性:(aequiv b(mod m))
    2.对称性:若(aequiv b(mod m)),则(bequiv a(mod m))
    3.传递性:若(aequiv b(mod m))(bequiv c(mod m)),则(aequiv c(mod m))
    4.同加性:若(aequiv b(mod m)),则(a+cequiv b+c(mod m))
    5.同乘性:若(aequiv b(mod m)),则(aast cequiv bast c(mod m)),若(aequiv b(mod m))(cequiv d),则(aast cequiv bast d(mod m))
    6.同幂性:若(aequiv b(mod m)),则(a^nequiv b^n(mod m))

  • 相关阅读:
    linux中使用nfs共享文件
    kNN处理iris数据集-使用交叉验证方法确定最优 k 值
    概念学习-候选消除算法
    OCaml相关
    vmare连接远程服务器的问题
    unresolved external symbol boost::throw_exception
    记录C/C++中遇到的一些小问题
    Linux下修改IP、DNS、路由命令行设置
    VS调试IDAPython脚本
    Linux下mysql5.7数据库root登录的问题
  • 原文地址:https://www.cnblogs.com/loceaner/p/10883909.html
Copyright © 2020-2023  润新知