并发编程中的两个重要问题:
1.线程之间如何通信(共享内存、消息传递);
2.线程之间如何同步;
在共享内存的并发模型里,线程之间共享程序的公共状态,线程之间通过写-读内存中的公共状态来隐式进行通信;
在消息传递的并发模型里,线程之间没有公共状态,线程之间必须通过明确的发送消息来显式进行通信。
同步是指程序用于控制不同线程之间操作发生相对顺序的机制。在共享内存并发模型里,同步是显式进行的。程序员必须显式指定某个方法或某段代码需要在线程之间互斥执行;在消息传递的并发模型里,由于消息的发送必须在消息的接收之前,因此同步是隐式进行的。
Java的并发采用的是共享内存模型,Java线程之间的通信总是隐式进行,整个通信过程对程序员完全透明。
在java中,所有实例域、静态域和数组元素存储在堆内存中,堆内存在线程之间共享(本文使用“共享变量”这个术语代指实例域,静态域和数组元素)。局部变量(Local variables),方法定义参数(java语言规范称之为formal method parameters)和异常处理器参数(exception handler parameters)不会在线程之间共享,它们不会有内存可见性问题,也不受内存模型的影响。
Java线程之间的通信由Java内存模型(本文简称为JMM)控制,JMM决定一个线程对共享变量的写入何时对另一个线程可见。从抽象的角度来看,JMM定义了线程和主内存之间的抽象关系:线程之间的共享变量存储在主内存(main memory)中,每个线程都有一个私有的本地内存(local memory),本地内存中存储了该线程以读/写共享变量的副本。本地内存是JMM的一个抽象概念,并不真实存在。它涵盖了缓存,写缓冲区,寄存器以及其他的硬件和编译器优化。Java内存模型的抽象示意图如下:
从上图来看,线程A与线程B之间如要通信的话,必须要经历下面2个步骤:
- 首先,线程A把本地内存A中更新过的共享变量刷新到主内存中去。
- 然后,线程B到主内存中去读取线程A之前已更新过的共享变量。
下面通过示意图来说明这两个步骤:
如上图所示,本地内存A和B有主内存中共享变量x的副本。假设初始时,这三个内存中的x值都为0。线程A在执行时,把更新后的x值(假设值为1)临时存放在自己的本地内存A中。当线程A和线程B需要通信时,线程A首先会把自己本地内存中修改后的x值刷新到主内存中,此时主内存中的x值变为了1。随后,线程B到主内存中去读取线程A更新后的x值,此时线程B的本地内存的x值也变为了1。
从整体来看,这两个步骤实质上是线程A在向线程B发送消息,而且这个通信过程必须要经过主内存。JMM通过控制主内存与每个线程的本地内存之间的交互,来为java程序员提供内存可见性保证。
数据依赖性
如果两个操作访问同一个变量,且这两个操作中有一个为写操作,此时这两个操作之间就存在数据依赖性。数据依赖分下列三种类型:
名称 | 代码示例 | 说明 |
写后读 | a = 1;b = a; | 写一个变量之后,再读这个位置。 |
写后写 | a = 1;a = 2; | 写一个变量之后,再写这个变量。 |
读后写 | a = b;b = 1; | 读一个变量之后,再写这个变量。 |
上面三种情况,只要重排序两个操作的执行顺序,程序的执行结果将会被改变。
前面提到过,编译器和处理器可能会对操作做重排序。编译器和处理器在重排序时,会遵守数据依赖性,编译器和处理器不会改变存在数据依赖关系的两个操作的执行顺序。
注意,这里所说的数据依赖性仅针对单个处理器中执行的指令序列和单个线程中执行的操作,不同处理器之间和不同线程之间的数据依赖性不被编译器和处理器考虑。
重排序对多线程的影响
现在让我们来看看,重排序是否会改变多线程程序的执行结果。请看下面的示例代码:
class ReorderExample { int a = 0; boolean flag = false; public void writer() { a = 1; //1 flag = true; //2 } Public void reader() { if (flag) { //3 int i = a * a; //4 …… } } }
flag变量是个标记,用来标识变量a是否已被写入。这里假设有两个线程A和B,A首先执行writer()方法,随后B线程接着执行reader()方法。线程B在执行操作4时,能否看到线程A在操作1对共享变量a的写入?
答案是:不一定能看到。
由于操作1和操作2没有数据依赖关系,编译器和处理器可以对这两个操作重排序;同样,操作3和操作4没有数据依赖关系,编译器和处理器也可以对这两个操作重排序。让我们先来看看,当操作1和操作2重排序时,可能会产生什么效果?请看下面的程序执行时序图:
如上图所示,操作1和操作2做了重排序。程序执行时,线程A首先写标记变量flag,随后线程B读这个变量。由于条件判断为真,线程B将读取变量a。此时,变量a还根本没有被线程A写入,在这里多线程程序的语义被重排序破坏了!
※注:本文统一用红色的虚箭线表示错误的读操作,用绿色的虚箭线表示正确的读操作。
下面再让我们看看,当操作3和操作4重排序时会产生什么效果(借助这个重排序,可以顺便说明控制依赖性)。下面是操作3和操作4重排序后,程序的执行时序图:
在程序中,操作3和操作4存在控制依赖关系。当代码中存在控制依赖性时,会影响指令序列执行的并行度。为此,编译器和处理器会采用猜测(Speculation)执行来克服控制相关性对并行度的影响。以处理器的猜测执行为例,执行线程B的处理器可以提前读取并计算a*a,然后把计算结果临时保存到一个名为重排序缓冲(reorder buffer ROB)的硬件缓存中。当接下来操作3的条件判断为真时,就把该计算结果写入变量i中。
从图中我们可以看出,猜测执行实质上对操作3和4做了重排序。重排序在这里破坏了多线程程序的语义!
在单线程程序中,对存在控制依赖的操作重排序,不会改变执行结果(这也是as-if-serial语义允许对存在控制依赖的操作做重排序的原因);但在多线程程序中,对存在控制依赖的操作重排序,可能会改变程序的执行结果。
volatile写-读建立的happens before关系
上面讲的是volatile变量自身的特性,对程序员来说,volatile对线程的内存可见性的影响比volatile自身的特性更为重要,也更需要我们去关注。
从JSR-133开始,volatile变量的写-读可以实现线程之间的通信。
从内存语义的角度来说,volatile与监视器锁有相同的效果:volatile写和监视器的释放有相同的内存语义;volatile读与监视器的获取有相同的内存语义。
请看下面使用volatile变量的示例代码:
class VolatileExample {
int a = 0;
volatile boolean flag = false;
public void writer() {
a = 1; //1
flag = true; //2
}
public void reader() {
if (flag) { //3
int i = a; //4
……
}
}
}
假设线程A执行writer()方法之后,线程B执行reader()方法。根据happens before规则,这个过程建立的happens before 关系可以分为两类:
- 根据程序次序规则,1 happens before 2; 3 happens before 4。
- 根据volatile规则,2 happens before 3。
- 根据happens before 的传递性规则,1 happens before 4。
上述happens before 关系的图形化表现形式如下:
在上图中,每一个箭头链接的两个节点,代表了一个happens before 关系。黑色箭头表示程序顺序规则;橙色箭头表示volatile规则;蓝色箭头表示组合这些规则后提供的happens before保证。
这里A线程写一个volatile变量后,B线程读同一个volatile变量。A线程在写volatile变量之前所有可见的共享变量,在B线程读同一个volatile变量后,将立即变得对B线程可见。
volatile写-读的内存语义
volatile写的内存语义如下:
- 当写一个volatile变量时,JMM会把该线程对应的本地内存中的共享变量刷新到主内存。
以上面示例程序VolatileExample为例,假设线程A首先执行writer()方法,随后线程B执行reader()方法,初始时两个线程的本地内存中的flag和a都是初始状态。下图是线程A执行volatile写后,共享变量的状态示意图:
如上图所示,线程A在写flag变量后,本地内存A中被线程A更新过的两个共享变量的值被刷新到主内存中。此时,本地内存A和主内存中的共享变量的值是一致的。
volatile读的内存语义如下:
- 当读一个volatile变量时,JMM会把该线程对应的本地内存置为无效。线程接下来将从主内存中读取共享变量。
下面是线程B读同一个volatile变量后,共享变量的状态示意图:
如上图所示,在读flag变量后,本地内存B已经被置为无效。此时,线程B必须从主内存中读取共享变量。线程B的读取操作将导致本地内存B与主内存中的共享变量的值也变成一致的了。
如果我们把volatile写和volatile读这两个步骤综合起来看的话,在读线程B读一个volatile变量后,写线程A在写这个volatile变量之前所有可见的共享变量的值都将立即变得对读线程B可见。
下面对volatile写和volatile读的内存语义做个总结:
- 线程A写一个volatile变量,实质上是线程A向接下来将要读这个volatile变量的某个线程发出了(其对共享变量所在修改的)消息。
- 线程B读一个volatile变量,实质上是线程B接收了之前某个线程发出的(在写这个volatile变量之前对共享变量所做修改的)消息。
- 线程A写一个volatile变量,随后线程B读这个volatile变量,这个过程实质上是线程A通过主内存向线程B发送消息。
锁的释放-获取建立的happens before 关系
锁是java并发编程中最重要的同步机制。锁除了让临界区互斥执行外,还可以让释放锁的线程向获取同一个锁的线程发送消息。
下面是锁释放-获取的示例代码:
class MonitorExample { int a = 0; public synchronized void writer() { //1 a++; //2 } //3 public synchronized void reader() { //4 int i = a; //5 …… } //6 }
假设线程A执行writer()方法,随后线程B执行reader()方法。根据happens before规则,这个过程包含的happens before 关系可以分为两类:
- 根据程序次序规则,1 happens before 2, 2 happens before 3; 4 happens before 5, 5 happens before 6。
- 根据监视器锁规则,3 happens before 4。
- 根据happens before 的传递性,2 happens before 5。
上述happens before 关系的图形化表现形式如下:
在上图中,每一个箭头链接的两个节点,代表了一个happens before 关系。黑色箭头表示程序顺序规则;橙色箭头表示监视器锁规则;蓝色箭头表示组合这些规则后提供的happens before保证。
上图表示在线程A释放了锁之后,随后线程B获取同一个锁。在上图中,2 happens before 5。因此,线程A在释放锁之前所有可见的共享变量,在线程B获取同一个锁之后,将立刻变得对B线程可见。
锁释放和获取的内存语义
当线程释放锁时,JMM会把该线程对应的本地内存中的共享变量刷新到主内存中。以上面的MonitorExample程序为例,A线程释放锁后,共享数据的状态示意图如下:
当线程获取锁时,JMM会把该线程对应的本地内存置为无效。从而使得被监视器保护的临界区代码必须要从主内存中去读取共享变量。下面是锁获取的状态示意图:
对比锁释放-获取的内存语义与volatile写-读的内存语义,可以看出:锁释放与volatile写有相同的内存语义;锁获取与volatile读有相同的内存语义。
下面对锁释放和锁获取的内存语义做个总结:
- 线程A释放一个锁,实质上是线程A向接下来将要获取这个锁的某个线程发出了(线程A对共享变量所做修改的)消息。
- 线程B获取一个锁,实质上是线程B接收了之前某个线程发出的(在释放这个锁之前对共享变量所做修改的)消息。
- 线程A释放锁,随后线程B获取这个锁,这个过程实质上是线程A通过主内存向线程B发送消息。
参考:http://blog.csdn.net/ccit0519/article/details/11241403