• k-means 聚类过程演示


    k-means是一种非监督 (从下图 0 当中我们可以看到训练数据并没有标签标注类别)的聚类算法:

    K-Means clustering intends to partition n objects into k clusters in which each object belongs to the cluster with the nearest mean. This method produces exactly k different clusters of greatest possible distinction. The best number of clusters k leading to the greatest separation (distance) is not known as a priori and must be computed from the data. The objective of K-Means clustering is to minimize total intra-cluster variance, or, the squared error function: 

    0.initial

     

    1.select centroids randomly   

      

     

    2.assign points

     

     3.update centroids

     4.reassign points

     5.update centroids

     

     6.reassign points

     

    7.iteration

     

    reference:

    https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

    https://www.saedsayad.com/clustering_kmeans.htm

    转载请注明来源:https://www.cnblogs.com/lnas01/p/10347650.html

  • 相关阅读:
    mouseenter和mouseleave,mouseover和mouseout
    哈哈哈
    instanceof与typeof
    js事件传参
    浮动与清除问题
    简易富文本编辑
    js之prototype
    json序列化
    我对Defer and Promise的实现
    Ajax 完整教程
  • 原文地址:https://www.cnblogs.com/lnas01/p/10347650.html
Copyright © 2020-2023  润新知