• [动态规划][概率dp]Coins I


    题目描述

    Alice and Bob are playing a simple game. They line up a row of n identical coins, all with the heads facing down onto the table and the tails upward.
    For exactly m times they select any k of the coins and toss them into the air, replacing each of them either heads-up or heads-down with the same possibility. Their purpose is to gain as many coins heads-up as they can.

    输入

    The input has several test cases and the first line contains the integer t (1 ≤ t ≤ 1000) which is the total number of cases.
    For each case, a line contains three space-separated integers n, m (1 ≤ n, m ≤ 100) and k (1 ≤ k ≤ n).

    输出

    For each test case, output the expected number of coins heads-up which you could have at the end under the optimal strategy, as a real number with the precision of 3 digits.

    样例输入

    6
    2 1 1
    2 3 1
    5 4 3
    6 2 3
    6 100 1
    6 100 2
    

    样例输出

    0.500
    1.250
    3.479
    3.000
    5.500
    5.000
    思路:概率dp;状态dp[i][j]表示i次操作后,有j枚硬币正面朝上的概率;初步考虑状态转移方程为:dp[i][j]=sum{r=1~n dp[i-1][r] * [C(k,j-r)/(2^k)]}
    但其实不对,首先要分类j>=r和j<r两种情况;
    j>=r的时候很好想,根据最优策略(优先选择正面朝下的硬币翻转):
    当n-r>=k时,从n-r中任选k个硬币翻转,k个硬币中有(j-r)个硬币正面朝上的概率为C(k,j-r)/2^k,所以此时dp[i][j]+=dp[i-1][r] * [C(k,j-r)/2^k];
    当n-r<k时,从n-r中选n-r个,从r中选k-(n-r)个硬币翻转,k个硬币中j-r+k-(n-r)正面朝上的概率为P(计算同上),此时dp[i][j]+=dp[i][r]*P;
    j<r时,根据最优策略:
    当n-r>=k时,continue;
    当n-r<k时,从n-r中选n-r个,从r中选k-(n-r)个硬币翻转,当r-[k-(n-r)]>j时,continue;否则,k个硬币中要有j-{r-[k-(n-r)]}个硬币正面朝上,
    AC代码:
    #include <iostream>
    #include<cstdio>
    #include<cstring>
    using namespace std;
    
    double f[110];
    double dp[110][110];
    double pow[110];
    double c[110][110];
    
    void init(){
      pow[0]=1;c[0][0]=1;
      for(int i=1;i<=100;i++) {
            pow[i]=pow[i-1]*1.0/2.0;
            c[i][0]=1;for(int j=1;j<=i;j++) c[i][j]=c[i-1][j-1]+c[i-1][j];
      }
    }
    
    int main()
    {
        init();
        int t;scanf("%d",&t);
        while(t--){
            int n,m,k;scanf("%d%d%d",&n,&m,&k);
            memset(dp,0,sizeof(dp)); dp[0][0]=1;
            for(int i=1;i<=m;i++){
                for(int j=0;j<=n;j++){
                    for(int r=0;r<=n;r++){
                        if(j>=r){
                            if(n-r>=k) {
                                    dp[i][j]+=(dp[i-1][r]*c[k][j-r]*1.0*(pow[k]*1.0));
                            }
                            else dp[i][j]+=(dp[i-1][r]*c[k][j-r+(k-(n-r))]*1.0*(pow[k]*1.0));
                        }
                        else{
                            if(n-r>=k) continue;
                            else{
                                if(r-(k-(n-r))>j) continue;
                                else dp[i][j]+=(dp[i-1][r]*c[k][j-(r-(k-(n-r)))]*1.0*(pow[k]*1.0));
                            }
                        }
                    }
                }
            }
            double ans=0;
            for(int i=0;i<=n;i++) ans+=i*dp[m][i];
            printf("%.3f
    ",ans);
        }
        return 0;
    }

     

    (图片参考:https://www.cnblogs.com/hrhguanli/p/3960520.html

    转载请注明出处:https://www.cnblogs.com/lllxq/
  • 相关阅读:
    OpenStack Havana 部署在Ubuntu 12.04 Server 【OVS+GRE】(二)——网络节点的安装
    OpenStack Havana 部署在Ubuntu 12.04 Server 【OVS+GRE】(一)——控制节点的安装
    OpenStack Havana 部署在Ubuntu 12.04 Server 【OVS+GRE】——序
    在Openstack H版部署Nova Cell 时 ,终端输入nova service-list 和 nova host-list 命令将报错
    OpenStack G版以后的Availability Zone与Aggregate Hosts
    ubuntu设置WPA2-PSK的wifi热点(AP)——hostapd+dhcpd
    公有云开启全面竞争时代——青云QingCloud
    ethtool的基本设置
    OpenStack网络的前世今生
    Nova 无法向虚机注入密钥
  • 原文地址:https://www.cnblogs.com/lllxq/p/9515925.html
Copyright © 2020-2023  润新知