题目描述
In Finite Encyclopedia of Integer Sequences (FEIS), all integer sequences of lengths between 1 and N (inclusive) consisting of integers between 1 and K (inclusive) are listed.
Let the total number of sequences listed in FEIS be X. Among those sequences, find the (X⁄2)-th (rounded up to the nearest integer) lexicographically smallest one.
Constraints
1≤N,K≤3×105
N and K are integers.
Let the total number of sequences listed in FEIS be X. Among those sequences, find the (X⁄2)-th (rounded up to the nearest integer) lexicographically smallest one.
Constraints
1≤N,K≤3×105
N and K are integers.
输入
Input is given from Standard Input in the following format:
K N
K N
输出
Print the (X⁄2)-th (rounded up to the nearest integer) lexicographically smallest sequence listed in FEIS, with spaces in between, where X is the total number of sequences listed in FEIS.
样例输入
3 2
样例输出
2 1
提示
There are 12 sequences listed in FEIS: (1),(1,1),(1,2),(1,3),(2),(2,1),(2,2),(2,3),(3),(3,1),(3,2),(3,3). The (12⁄2=6)-th lexicographically smallest one among them is (2,1).
思路:1.k为偶时:因为序列总数x=,那(X⁄2)-th (rounded up to the nearest integer) lexicographically smallest sequence一定是{k/2,k,k,k...}
2.k为奇时:可以证明(不贴了),(X⁄2)-th (rounded up to the nearest integer) lexicographically smallest sequence是{k/2,k/2,k/2,...}的前[n/2](取下整)个序列,(即{k/2,k/2,k/2,...}再向前挪[n/2]就是答案);
AC代码:
#include<cstdio> #include<algorithm> using namespace std; int ans[300010]; int main() { int k,n;scanf("%d%d",&k,&n); if(k%2==0){ printf("%d",k/2); for(int i=2;i<=n;i++){ printf(" %d",k); } printf(" "); } else{ int t; if(n%2==1) t=(n-1)/2; else t=(n-1)/2+1; for(int i=1;i<=n;i++) ans[i]=k/2+1; int len=n; while(t--){ if(ans[len]==1) len--; else{ ans[len]--; for(int i=len+1;i<=n;i++) ans[i]=k; len=n; } } for(int i=1;i<=len;i++) { if(i!=1) printf(" "); printf("%d",ans[i]); } printf(" "); } }