• [动态规划]Tak and Cards


    题目描述

    Tak has N cards. On the i-th (1≤i≤N) card is written an integer xi. He is selecting one or more cards from these N cards, so that the average of the integers written on the selected cards is exactly A. In how many ways can he make his selection?

    Constraints
    1≤N≤50
    1≤A≤50
    1≤xi≤50
    N,A,xi are integers.
    Partial Score
    200 points will be awarded for passing the test set satisfying 1≤N≤16.

    输入

    The input is given from Standard Input in the following format:
    N A
    x1 x2 … xN

    输出

    Print the number of ways to select cards such that the average of the written integers is exactly A.

    样例输入

    4 8
    7 9 8 9
    

    样例输出

    5
    

    提示

    The following are the 5 ways to select cards such that the average is 8:
    Select the 3-rd card.
    Select the 1-st and 2-nd cards.
    Select the 1-st and 4-th cards.
    Select the 1-st, 2-nd and 3-rd cards.
    Select the 1-st, 3-rd and 4-th cards.

    思路:很显然,是要求算,这里dp[i][j]表示取i个值和为j的取法数。C(n,1)+C(n,2)+...+C(n,n)=2^n-1,暴力枚举显然超时;考虑找到dp[i][j]的递推式;
    容易想到dp[i][j]+=dp[i-1][j-a[k]](k=1~n),也就是说取i个值和为j的方法数等于取i-1个值和为j-a[k](k=1~n)的方法数之和?显然是不对的,拿样例举例,计算dp[3][24](初值为0)时,在k=1时,dp[3][24]+=dp[2][17],k=2时,dp[3][24]+=dp[2][15],k=3时,dp[3][24]+=dp[2][16]...暂且先看k=1~3这一部分,并暂且认为已计算出dp[2][j]的所有结果都是正确的,那dp[3][24]在被k=1~3更新时,很显然能看见取前三个数这种取法被重复计算了三次(也就是这一种取法被视为了三种取法),那如何避免这样的重复计算呢——在计算dp[i][j]考虑取a[k]时,取满j-a[k]的另外i-1个值只能从a[1~k]之中取。这样的话,就变成了考虑用a[k]更新所有的dp[i][j](i=k~1,j=sum[k]~a[k])(注意用a[k]更新dp[i][j]的顺序——更新dp[i][j]要用到dp[i-1][j-a[k]],不能用a[k]先把dp[i-1][j-a[k]]给更新了),而不是考虑将dp[i][j]用所有的a[k](k=1~n)去更新;
    AC代码:
    #include <iostream>
    #include<cstdio>
    typedef long long ll;
    using namespace std;
    
    int a[55];
    int sum[55];
    ll dp[55][2505];
    
    int main()
    {
        int n,A;
        scanf("%d%d",&n,&A);
        for(int i=1;i<=n;i++) {scanf("%d",&a[i]); sum[i]=sum[i-1]+a[i];}
        dp[0][0]=1;
        for(int k=1;k<=n;k++){
            for(int i=k;i>=1;i--){
                for(int j=sum[k];j>=a[k];j--){
                    dp[i][j]+=dp[i-1][j-a[k]];
                }
            }
        }
        ll ans=0;
        for(int i=1;i<=n;i++) ans+=dp[i][i*A];
        printf("%lld
    ",ans);
        return 0;
    }

    另外,关于动态规划和递推,我已经分不清了(#°Д°)

    转载请注明出处:https://www.cnblogs.com/lllxq/
  • 相关阅读:
    asp.net发布和更新网站
    细说 Form (表单)
    python之面向对象进阶3
    python之面向对象进阶2
    python之面向对象进阶
    python之面向对象
    python之模块与包
    python之常用模块(续)
    python 之常用模块
    迭代器和生成器函数
  • 原文地址:https://www.cnblogs.com/lllxq/p/9073081.html
Copyright © 2020-2023  润新知