• 针对于高频低频图像的理解


    1首先什么是高频图像,什么是低频图像

    低频图像就是灰度变化比较小的图像

    高频图像就是灰度变化比较大的图像

    所谓灰度变化比较小的图像就是,内容

    所谓灰度变化比较大的图像就是,边缘和纹理,

      边缘:灰度变化较大,比如我穿了一件红色的衣服,北京是白色的,那么,红色衣服与白色背景的边缘是高频的,因为他们的图像变化剧烈,而红色衣服内容他们的变化是低频的,白色背景内容也是低频的,高频,就是变化频率高,变化频率快

      纹理:内部纹理,比如脸上有没有褶子,还有脸上有没有什么斑点,这个都是高频,因为相对于一张平坦无比的大饼脸,一个褶子确实变化很大,所以,这是高频信息

    ----------------------高频和低频图像----------------------------------------

    高频和低频图像,对于深度学习来说,学习难度是不一样的,很明显,低频容易学,高频难学

    为什么?因为低频图像,在卷积层比对的时候,比如白色的大饼脸,一个简单的卷积,就能比对成功

    而对于高频图像,就很复杂,因为线条不一样,那么比对的时候,要生成很多不同的weight,这个不同的weight可能对应于不同形状,比如圆形痦子,三角形痦子,方形痦子,然后看真实图片是哪个,就激活哪个,但是这就需要很多weight,而且肯定比大饼脸难匹配的多,还有可能把头上的发卡当成痦子,所以比较难

    这个weight遇到的情况:

      1 可能把头上的发卡识别成痦子,这个weight消灭

      2 可能在脸上找到三角形痦子,这个weight保留

      3 可能在脸上找到圆形痦子,这个weight保留,有圆形痦子的人,在通过三角形痦子weight时,可能没结果,但是在通过圆形痦子有结果,那么此人是圆形痦子

      4 可能在脸上啥也找不到,这个weight消灭

    ----------------------------------------------------------------------

    面对mse和gan loss的理解

    mse认为高频低频是一样的

    gan因为是网络,所以更加有针对性,,这个未完待续

     gan可以找到更多的纹理细节

  • 相关阅读:
    【转】jmeter学习笔记——如何使用镜像服务器
    【转】jmeter学习笔记——分布式测试
    【转】jmeter学习笔记——一种简单的数据库性能测试方法
    【转】jmeter学习笔记——JDBC测试计划-连接Mysql
    【转】jmeter学习笔记——集合点
    【转】jmeter学习笔记——检查点
    【转】jmeter学习笔记——参数化
    【转】jmeter学习笔记——关联
    python笔记-字符串连接
    python3笔记-读取ini配置文件
  • 原文地址:https://www.cnblogs.com/lllcccddd/p/10641757.html
Copyright © 2020-2023  润新知