• POJ 2663 Tri Tiling 【状压DP】


    Description

    In how many ways can you tile a 3xn rectangle with 2x1 dominoes? 
    Here is a sample tiling of a 3x12 rectangle. 

    Input

    Input consists of several test cases followed by a line containing -1. Each test case is a line containing an integer 0 <= n <= 30.

    Output

    For each test case, output one integer number giving the number of possible tilings.

    Sample Input

    2
    8
    12
    -1
    

    Sample Output

    3
    153
    2131

    题解

    看了别人的博客都是递推啥的,

    之前自己推了半天推不出来,智商捉鸡,就放着没做了

    直到我做了POJ 2411后

    再回来看这题,就是把宽度设为3而已... 

    #include <iostream>
    #include <cstdio>       //EOF,NULL
    #include <cstring>      //memset
    #include <cmath>        //ceil,floor,exp,log(e),log10(10),hypot(sqrt(x^2+y^2)),cbrt(sqrt(x^2+y^2+z^2))
    #include <algorithm>    //fill,reverse,next_permutation,__gcd,
    #include <string>
    #include <vector>
    #include <queue>
    #include <stack>
    #include <map>
    using namespace std;
    #define rep(i, a, n)        for (int i = a; i < n; ++i)
    #define sca(x)            scanf("%d", &x)
    #define sca2(x, y)        scanf("%d%d", &x, &y)
    #define sca3(x, y, z)        scanf("%d%d%d", &x, &y, &z)
    #define pri(x)            printf("%d
    ", x)
    #define pb    push_back
    #define mp    make_pair
    typedef pair<int, int>        P;
    typedef long long        ll;
    const ll inf = 99999999999;
    const int INF = 0x3f3f3f3f;
    const int mod = 1e9+7;
    const int maxn = 105;
    const int N = 1e4 + 5;
    int t, n, m;
    int cnt, ans, ed;
    ll dp[31][1<<4];
    int path[50000][2];
    int h, w;
    void dfs(int l, int now, int pre)
    {
        if (l > w) {
            return;
        }
        if (l == w) {
            path[cnt][0] = pre;
            path[cnt++][1] = now;
            return;
        }
        dfs(l + 2, (now << 2)|3, (pre << 2)|3); // 竖放,当前行为1,上一行为0
        dfs(l + 1, (now << 1)|1, (pre << 1)); // 横放 当前行和上一行都为11
        dfs(l + 1, (now << 1), (pre << 1)|1);  //不放,上一行为1,当前行为0
    }
    
    
    int main()
    {
        while (sca(h) && h != -1)
        {
            w = 3;
            cnt = 0;
            dfs(0, 0, 0);
            memset(dp, 0, sizeof dp);
            ed = (1 << w) - 1;
            dp[0][ed] = 1;
            for (int i = 0; i < h; i++)
            {
                for (int j = 0; j < cnt; j++)
                {
                    dp[i + 1][path[j][1]] += dp[i][path[j][0]];
                }
            }
            printf("%lld
    ", dp[h][ed]);
        }
        return (0);
    }
     
  • 相关阅读:
    HDU 2594 扩展kmp模板题
    HDU 1358 简单kmp
    HDU 3336 扩展kmp
    SPOJ SUBLEX 求第k小子串
    Codeforces 235C
    HDU 4622 Reincarnation
    HDU 4622 求解区间字符串中的不同子串的个数
    [LeetCode] Length of Last Word 字符串查找
    [LeetCode] Sudoku Solver 解数独,递归,回溯
    [LeetCode] Longest Common Prefix 字符串公有前序
  • 原文地址:https://www.cnblogs.com/llke/p/10780076.html
Copyright © 2020-2023  润新知