今天准备将mysql的数据倒腾到RDD。非常早曾经就知道有一个JdbcRDD。就想着使用一下,结果发现却是鸡肋一个。
附上个样例:
使用的MySQL表的数据例如以下:
首先,看看JdbcRDD的定义:
* An RDD that executes an SQL query on a JDBC connection and reads results. * For usage example, see test case JdbcRDDSuite. * * @param getConnection a function that returns an open Connection. * The RDD takes care of closing the connection. * @param sql the text of the query. * The query must contain two ? placeholders for parameters used to partition the results. * E.g. "select title, author from books where ? <= id and id <= ?" * @param lowerBound the minimum value of the first placeholder * @param upperBound the maximum value of the second placeholder * The lower and upper bounds are inclusive. * @param numPartitions the number of partitions. * Given a lowerBound of 1, an upperBound of 20, and a numPartitions of 2, * the query would be executed twice, once with (1, 10) and once with (11, 20) * @param mapRow a function from a ResultSet to a single row of the desired result type(s). * This should only call getInt, getString, etc; the RDD takes care of calling next. * The default maps a ResultSet to an array of Object. */ class JdbcRDD[T: ClassTag]( sc: SparkContext, getConnection: () => Connection, sql: String, lowerBound: Long, upperBound: Long, numPartitions: Int, mapRow: (ResultSet) => T = JdbcRDD.resultSetToObjectArray _)
附上个样例:
package test import java.sql.{Connection, DriverManager, ResultSet} import org.apache.spark.rdd.JdbcRDD import org.apache.spark.{SparkConf, SparkContext} object spark_mysql { def main(args: Array[String]) { //val conf = new SparkConf().setAppName("spark_mysql").setMaster("local") val sc = new SparkContext("local","spark_mysql") def createConnection() = { Class.forName("com.mysql.jdbc.Driver").newInstance() DriverManager.getConnection("jdbc:mysql://192.168.0.15:3306/wsmall", "root", "passwd") } def extractValues(r: ResultSet) = { (r.getString(1), r.getString(2)) } val data = new JdbcRDD(sc, createConnection, "SELECT id,aa FROM bbb where ?<= ID AND ID <= ?", lowerBound = 3, upperBound =5, numPartitions = 1, mapRow = extractValues) println(data.collect().toList) sc.stop() } }
使用的MySQL表的数据例如以下:
执行结果例如以下:
能够看出:JdbcRDD的sql參数要带有两个?的占位符,而这两个占位符是给參数lowerBound和參数upperBound定义where语句的边界的,假设不过这种话,还能够接受;但悲催的是參数lowerBound和參数upperBound都是Long类型的,,不知道如今作为keyword或做查询的字段有多少long类型呢?不过參照JdbcRDD的源代码,用户还是能够写出符合自己需求的JdbcRDD,这算是不幸中之大幸了。
近期一直忙于炼数成金的spark课程。没多少时间整理博客。
特意给想深入了解spark的朋友推荐一位好友的博客http://www.cnblogs.com/cenyuhai/ 。里面有不少源代码博文,利于理解spark的内核。