• Filters.h各种信号恢复滤波器头文件


    这篇文章有部分原理:http://blog.csdn.net/u013467442/article/details/41125473

    代码下载地址:http://read.pudn.com/downloads125/sourcecode/app/529186/source/3rdParty/FreeImage/FreeImageToolkit/Filters.h__.htm


    // ========================================================== 
    // Upsampling / downsampling filters 
    // 
    // Design and implementation by 
    // - Herv� Drolon (drolon@infonie.fr) 
    // 
    // This file is part of FreeImage 3 
    // 
    // COVERED CODE IS PROVIDED UNDER THIS LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTY 
    // OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES 
    // THAT THE COVERED CODE IS FREE OF DEFECTS, MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE 
    // OR NON-INFRINGING. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE COVERED 
    // CODE IS WITH YOU. SHOULD ANY COVERED CODE PROVE DEFECTIVE IN ANY RESPECT, YOU (NOT 
    // THE INITIAL DEVELOPER OR ANY OTHER CONTRIBUTOR) ASSUME THE COST OF ANY NECESSARY 
    // SERVICING, REPAIR OR CORRECTION. THIS DISCLAIMER OF WARRANTY CONSTITUTES AN ESSENTIAL 
    // PART OF THIS LICENSE. NO USE OF ANY COVERED CODE IS AUTHORIZED HEREUNDER EXCEPT UNDER 
    // THIS DISCLAIMER. 
    // 
    // Use at your own risk! 
    // ========================================================== 
     
    #ifndef _FILTERS_H_ 
    #define _FILTERS_H_ 
     
    /** 
     CGenericFilter is a generic abstract filter class used to access to the filter library.<br> 
     Filters used in this library have been mainly taken from the following references : <br> 
    <b>Main reference</b> : <br> 
    Paul Heckbert, C code to zoom raster images up or down, with nice filtering.  
    UC Berkeley, August 1989. [online] http://www-2.cs.cmu.edu/afs/cs.cmu.edu/Web/People/ph/heckbert.html 
     
    <b>Heckbert references</b> : <br> 
    <ul> 
    <li>Oppenheim A.V., Schafer R.W., Digital Signal Processing, Prentice-Hall, 1975 
    <li>Hamming R.W., Digital Filters, Prentice-Hall, Englewood Cliffs, NJ, 1983 
    <li>Pratt W.K., Digital Image Processing, John Wiley and Sons, 1978 
    <li>Hou H.S., Andrews H.C., "Cubic Splines for Image Interpolation and Digital Filtering",  
    IEEE Trans. Acoustics, Speech, and Signal Proc., vol. ASSP-26, no. 6, pp. 508-517, Dec. 1978. 
    </ul> 
     
    */ 
    class CGenericFilter 
    { 
    protected: 
     
        #define FILTER_PI  double (3.1415926535897932384626433832795) 
        #define FILTER_2PI double (2.0 * 3.1415926535897932384626433832795) 
        #define FILTER_4PI double (4.0 * 3.1415926535897932384626433832795) 
     
        /// Filter support 
    	double  m_dWidth; 
     
    public: 
         
        /// Constructor 
    	CGenericFilter (double dWidth) : m_dWidth (dWidth) {} 
    	/// Destructor 
        virtual ~CGenericFilter() {} 
     
        /// Returns the filter support 
    	double GetWidth()                   { return m_dWidth; } 
    	/// Change the filter suport 
        void   SetWidth (double dWidth)     { m_dWidth = dWidth; } 
     
        /// Returns F(dVal) where F is the filter's impulse response 
    	virtual double Filter (double dVal) = 0; 
    }; 
     
    // ----------------------------------------------------------------------------------- 
    // Filters library 
    // All filters are centered on 0 
    // ----------------------------------------------------------------------------------- 
     
    /** 
     Box filter<br> 
     Box, pulse, Fourier window, 1st order (constant) b-spline.<br><br> 
     
     <b>Reference</b> : <br> 
     Glassner A.S., Principles of digital image synthesis. Morgan Kaufmann Publishers, Inc, San Francisco, Vol. 2, 1995 
    */ 
    class CBoxFilter : public CGenericFilter 
    { 
    public: 
        /** 
    	Constructor<br> 
    	Default fixed width = 0.5 
    	*/ 
        CBoxFilter() : CGenericFilter(0.5) {} 
        virtual ~CBoxFilter() {} 
     
        double Filter (double dVal) { return (fabs(dVal) <= m_dWidth ?

    1.0 : 0.0); } }; /** Bilinear filter */ class CBilinearFilter : public CGenericFilter { public: CBilinearFilter () : CGenericFilter(1) {} virtual ~CBilinearFilter() {} double Filter (double dVal) { dVal = fabs(dVal); return (dVal < m_dWidth ? m_dWidth - dVal : 0.0); } }; /** Mitchell & Netravali's two-param cubic filter<br> The parameters b and c can be used to adjust the properties of the cubic. They are sometimes referred to as "blurring" and "ringing" respectively. The default is b = 1/3 and c = 1/3, which were the values recommended by Mitchell and Netravali as yielding the most visually pleasing results in subjective tests of human beings. Larger values of b and c can produce interesting op-art effects--for example, try b = 0 and c = -5. <br><br> <b>Reference</b> : <br> Don P. Mitchell and Arun N. Netravali, Reconstruction filters in computer graphics. In John Dill, editor, Computer Graphics (SIGGRAPH '88 Proceedings), Vol. 22, No. 4, August 1988, pp. 221-228. */ class CBicubicFilter : public CGenericFilter { protected: // data for parameterized Mitchell filter double p0, p2, p3; double q0, q1, q2, q3; public: /** Constructor<br> Default fixed width = 2 @param b Filter parameter (default value is 1/3) @param c Filter parameter (default value is 1/3) */ CBicubicFilter (double b = (1/(double)3), double c = (1/(double)3)) : CGenericFilter(2) { p0 = (6 - 2*b) / 6; p2 = (-18 + 12*b + 6*c) / 6; p3 = (12 - 9*b - 6*c) / 6; q0 = (8*b + 24*c) / 6; q1 = (-12*b - 48*c) / 6; q2 = (6*b + 30*c) / 6; q3 = (-b - 6*c) / 6; } virtual ~CBicubicFilter() {} double Filter(double dVal) { dVal = fabs(dVal); if(dVal < 1) return (p0 + dVal*dVal*(p2 + dVal*p3)); if(dVal < 2) return (q0 + dVal*(q1 + dVal*(q2 + dVal*q3))); return 0; } }; /** Catmull-Rom spline, Overhauser spline<br> When using CBicubicFilter filters, you have to set parameters b and c such that <br> b + 2 * c = 1<br> in order to use the numerically most accurate filter.<br> This gives for b = 0 the maximum value for c = 0.5, which is the Catmull-Rom spline and a good suggestion for sharpness.<br><br> <b>References</b> : <br> <ul> <li>Mitchell Don P., Netravali Arun N., Reconstruction filters in computer graphics. In John Dill, editor, Computer Graphics (SIGGRAPH '88 Proceedings), Vol. 22, No. 4, August 1988, pp. 221-228. <li>Keys R.G., Cubic Convolution Interpolation for Digital Image Processing. IEEE Trans. Acoustics, Speech, and Signal Processing, vol. 29, no. 6, pp. 1153-1160, Dec. 1981. </ul> */ class CCatmullRomFilter : public CGenericFilter { public: /** Constructor<br> Default fixed width = 2 */ CCatmullRomFilter() : CGenericFilter(2) {} virtual ~CCatmullRomFilter() {} double Filter(double dVal) { if(dVal < -2) return 0; if(dVal < -1) return (0.5*(4 + dVal*(8 + dVal*(5 + dVal)))); if(dVal < 0) return (0.5*(2 + dVal*dVal*(-5 - 3*dVal))); if(dVal < 1) return (0.5*(2 + dVal*dVal*(-5 + 3*dVal))); if(dVal < 2) return (0.5*(4 + dVal*(-8 + dVal*(5 - dVal)))); return 0; } }; /** Lanczos-windowed sinc filter<br> Lanczos3 filter is an alternative to CBicubicFilter with high values of c about 0.6 ... 0.75 which produces quite strong sharpening. It usually offers better quality (fewer artifacts) and a sharp image.<br><br> */ class CLanczos3Filter : public CGenericFilter { public: /** Constructor<br> Default fixed width = 3 */ CLanczos3Filter() : CGenericFilter(3) {} virtual ~CLanczos3Filter() {} double Filter(double dVal) { dVal = fabs(dVal); if(dVal < m_dWidth) { return (sinc(dVal) * sinc(dVal / m_dWidth)); } return 0; } private: double sinc(double value) { if(value != 0) { value *= FILTER_PI; return (sin(value) / value); } return 1; } }; /** 4th order (cubic) b-spline<br> */ class CBSplineFilter : public CGenericFilter { public: /** Constructor<br> Default fixed width = 2 */ CBSplineFilter() : CGenericFilter(2) {} virtual ~CBSplineFilter() {} double Filter(double dVal) { dVal = fabs(dVal); if(dVal < 1) return (4 + dVal*dVal*(-6 + 3*dVal)) / 6; if(dVal < 2) { double t = 2 - dVal; return (t*t*t / 6); } return 0; } }; // ----------------------------------------------------------------------------------- // Window function library // ----------------------------------------------------------------------------------- /** Blackman window */ class CBlackmanFilter : public CGenericFilter { public: /** Constructor<br> Default width = 0.5 */ CBlackmanFilter (double dWidth = double(0.5)) : CGenericFilter(dWidth) {} virtual ~CBlackmanFilter() {} double Filter (double dVal) { if(fabs (dVal) > m_dWidth) { return 0; } double dN = 2 * m_dWidth + 1; dVal /= (dN - 1); return 0.42 + 0.5*cos(FILTER_2PI*dVal) + 0.08*cos(FILTER_4PI*dVal); } }; #endif // _FILTERS_H_


  • 相关阅读:
    2955 ACM 杭电 抢银行 01背包 乘法
    杭店 ACM 1864 最大报销额 01背包
    【ACM】 1231 最大连续子序列
    如何保证消息队列的幂等性
    Kafka如何保证消息的高可用
    消息队列的优点和缺点
    架构学习和经验积累的方法
    如何撰写总体设计与详细设计文档
    如何做合格的面试官
    如何设计好的接口
  • 原文地址:https://www.cnblogs.com/llguanli/p/8470630.html
Copyright © 2020-2023  润新知