• 概率论高速学习04:概率公理 全概率 贝叶斯 事件独立性


    概率论高速学习04:概率公理 全概率 贝叶斯 事件独立性

    原创地址: http://www.cnblogs.com/Alandre/ (泥沙砖瓦浆木匠),须要转载的,保留下! Thanks

           加油! 大牛总是不断努力,你却更须要加倍努力.

    Written In The Font

        数学和生活是技术之本, 有了数学,加上生活,才会开心.

        今天继续概率论:

    • 全概率
    • 贝叶斯
    • 事件独立性

    Content

    The total probability


    In the Set :
        image imageimage

                                                                 image

    The law of total probability is the proposition that if left{{B_n : n = 1, 2, 3, ldots}
ight} is a finite or countably infinitepartition of a sample space (in other words, a set of pairwise disjoint events whose union is the entire sample space) and each event B_n is measurable, then for any event A of the same probability space:

                 Pr(A)=sum_n Pr(Amid B_n)Pr(B_n),\,

    example:

    例. 甲、乙两家工厂生产某型号车床,当中次品率分别为20%, 5%。已知每月甲厂生产的数量是乙厂的两倍,现从一个月的产品中随意抽检一件,求该件产品为合格的概率?

    A表示产品合格,B表示产品来自甲厂

    image

     

    Bayes


    for some partition {Bj} of the event space, the event space is given or conceptualized in terms of P(Bj) and P(A|Bj). It is then useful to compute P(Ausing the law of total probability:        

                                   image

     

    example:

    An entomologist spots what might be a rare subspecies of beetle, due to the pattern on its back. In the rare subspecies, 98% have the pattern, or P(Pattern|Rare) = 98%. In the common subspecies, 5% have the pattern. The rare subspecies accounts for only 0.1% of the population. How likely is the beetle having the pattern to be rare, or what is P(Rare|Pattern)?

    From the extended form of Bayes' theorem (since any beetle can be only rare or common),

    egin{align}P(	ext{Rare}|	ext{Pattern}) &=frac{P(	ext{Pattern}|	ext{Rare})P(	ext{Rare})} {P(	ext{Pattern}|	ext{Rare})P(	ext{Rare}) \, + \, P(	ext{Pattern}|	ext{Common})P(	ext{Common})} \[8pt]&= frac{0.98 	imes 0.001} {0.98 	imes 0.001 + 0.05 	imes 0.999} \[8pt]&approx 1.9\%. end{align}

     

    One more example:

    image

     

    Independence


    Two events

    Two events A and B are independent if and only if their joint probability equals the product of their probabilities:

    mathrm{P}(A cap B) = mathrm{P}(A)mathrm{P}(B).

    Why this defines independence is made clear by rewriting with conditional probabilities:

    egin{align}mathrm{P}(A cap B) = mathrm{P}(A)mathrm{P}(B) &Leftrightarrow mathrm{P}(A) = frac{mathrm{P}(A cap B)}{mathrm{P}(B)} \&Leftrightarrow mathrm{P}(A) = mathrm{P}(Amid B)end{align}

    how about Three events

               image

     

    sometimes , we will see the Opposition that can be used to make the mess done. We will use the rule of independence such as : P(A^c)=1-P(A)\,

     

    Editor's Note

    “学吧,至少不亏.”一句良言 终身受用.


        12     好友:
        路漫漫其修远兮。吾将上下而求索。 
                                                                            --怪兽师傅 

        而非常多时候,所谓的选择都是虚的,那是由于没有出现最好的那个选择。而没有出现最好的选择。是由于你还没有强大到吸引来那个最好的。 
                                                                         --Vamei学长
    12     生活:

    QQ群【编程之美】:365234583 
       【关注】 新浪微博    豆瓣生活
    12     我想对你说:

        有错必究,假设你喜欢这篇文章,但求赞~ Thank u !

  • 相关阅读:
    bom案例2-弹出层
    bom案例1-div拖拽
    bom-scroll
    bom-client
    bom-offset
    9. 阻塞队列
    8. 读写锁
    7. CountDownLatch、CyclicBarrier、Semaphore
    6. Callable
    5. 集合不安全
  • 原文地址:https://www.cnblogs.com/llguanli/p/8438624.html
Copyright © 2020-2023  润新知