Edit Distance
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
a) Insert a character
b) Delete a character
c) Replace a character
自然语言处理(NLP)中。有一个基本问题就是求两个字符串的minimal Edit Distance, 也称Levenshtein distance。受到一篇Edit Distance介绍文章的启示。本文用动态规划求取了两个字符串之间的minimal Edit Distance. 动态规划方程将在下文进行解说。
1. what is minimal edit distance?
简单地说。就是仅通过插入(insert)、删除(delete)和替换(substitute)个操作将一个字符串s1变换到还有一个字符串s2的最少步骤数。熟悉算法的同学非常easy知道这是个动态规划问题。
事实上一个替换操作能够相当于一个delete+一个insert,所以我们将权值定义例如以下:
I (insert):1
D (delete):1
S (substitute):2
2. example:
intention->execution
Minimal edit distance:
delete i ; n->e ; t->x ; insert c ; n->u 求和得cost=8
3.calculate minimal edit distance dynamically
思路见凝视,这里D[i,j]就是取s1前i个character和s2前j个character所得minimal edit distance
三个操作动态进行更新:
D(i,j)=min { D(i-1, j) +1, D(i, j-1) +1 , D(i-1, j-1) + s1[i]==s2[j] ? 0 : 2}。中的三项分别相应D,I,S。(详见我同学的博客)
由于本题的替换操作权重相同为1。故字符不相等+1就可以。
1. what is minimal edit distance?
简单地说。就是仅通过插入(insert)、删除(delete)和替换(substitute)个操作将一个字符串s1变换到还有一个字符串s2的最少步骤数。熟悉算法的同学非常easy知道这是个动态规划问题。 事实上一个替换操作能够相当于一个delete+一个insert,所以我们将权值定义例如以下: I (insert):1 D (delete):1 S (substitute):2 2. example: intention->execution Minimal edit distance: delete i ; n->e ; t->x ; insert c ; n->u 求和得cost=8 3.calculate minimal edit distance dynamically 思路见凝视,这里D[i,j]就是取s1前i个character和s2前j个character所得minimal edit distance 三个操作动态进行更新: D(i,j)=min { D(i-1, j) +1, D(i, j-1) +1 , D(i-1, j-1) + s1[i]==s2[j] ? 0 : 2}。中的三项分别相应D,I,S。(详见我同学的博客)