GCD
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1294 Accepted Submission(s): 583
Problem Description
The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For example,(1,2)=1,(12,18)=6.
(a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem:
Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M.
(a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem:
Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M.
Input
The first line of input is an integer T(T<=100) representing the number of test cases. The following T lines each contains two numbers N and M (2<=N<=1000000000, 1<=M<=N), representing a test case.
Output
For each test case,output the answer on a single line.
Sample Input
3 1 1 10 2 10000 72
Sample Output
1 6 260
题意:
计算1-N区间里有多少数和N的GCD是大于M的。
解题思路:
直接计算绝对超时,所以要想到採用一些定理来进行优化。
①我们先看两个数 N = a*b,X= a*d。由于gcd ( N , X ) = a 所以b,d这两个数互质。又由于d能够是不论什么一个小于b的数。
所以d值数量的的多少就是b的欧拉函数值。
所以,我们能够枚举a,然后去求b。然后再求b的欧拉函数值。
②可是假设单纯这样所有枚举的话依然会超时,所以我们要想一个办法去优化它。
我们能够折半枚举。这里的折半并非二分的意思。
我们先看,我们枚举时,当i<sqrt(n),如果a=n / i, 当i>sqrt(n)之后 有b=n/i,我们观察到当n%i==0时,会出现一种情况,就是a*b==n。所以我们就能够仅仅须要枚举sqrt(n)种情况,然后和它相应的情况就是 n/i。
我们这样的枚举时间会快许多。
AC代码:
#include <stdio.h> #include <math.h> #include <vector> #include <queue> #include <string> #include <string.h> #include <stdlib.h> #include <iostream> #include <algorithm> using namespace std; int euler(int n) { int res=n; for(int i=2;i*i<=n;i++){ if(n%i==0){ res=res/i*(i-1); while(n%i==0) n/=i; } } if(n>1) res-=res/n; return res; } int main() { int t; scanf("%d",&t); while(t--){ int n,m; scanf("%d%d",&n,&m); int ans=0; for(int i=1;i*i<=n;i++){ if(n%i==0){ if(i>=m)ans+=euler(n/i); //计算sqrt(n)左边的 if(n/i>=m&&i*i!=n) ans+=euler(i);//计算sqrt(n)右边的i*i==n时。在上个语句已经运行 } } printf("%d ",ans); } return 0; }