DZY Loves Sequences
time limit per test
1 secondmemory limit per test
256 megabytesinput
standard inputoutput
standard outputDZY has a sequence a, consisting of n integers.
We'll call a sequence ai, ai + 1, ..., aj (1 ≤ i ≤ j ≤ n) a subsegment of the sequence a. The value (j - i + 1) denotes the length of the subsegment.
Your task is to find the longest subsegment of a, such that it is possible to change at most one number (change one number to any integer you want) from the subsegment to make the subsegment strictly increasing.
You only need to output the length of the subsegment you find.
Input
The first line contains integer n (1 ≤ n ≤ 105). The next line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 109).
Output
In a single line print the answer to the problem — the maximum length of the required subsegment.
Sample test(s)
input
6
7 2 3 1 5 6
output
5
#include <stdio.h> #include <string.h> #include <algorithm> using namespace std; #define N 100005 #define INF 0x3f3f3f3f int a[N],b[N],c[N]; int main() { int n,i; while(~scanf("%d",&n)) { memset(c,0,sizeof(c)); memset(b,0,sizeof(b)); for(i = 1; i<= n ; i++) scanf("%d",&a[i]); b[1] = 1; for(i = 2 ; i <= n ; i++){ if(a[i]>a[i-1]) b[i] = b[i-1]+1; else b[i] = 1; } c[n] = 1; for(i = n-1 ; i>=1 ; i--){ if(a[i]<a[i+1]) c[i] = c[i+1] +1; else c[i] = 1; } int ans = max(c[2]+1,b[n-1]+1); for(i = 2 ; i < n ; i++){ if(a[i+1]>a[i-1]+1) ans = max(ans,b[i-1]+c[i+1]+1); else ans = max(ans,max(b[i-1]+1,c[i+1]+1)); } printf("%d ",ans); } return 0; }