• hdu 1081


    To The Max

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 7927    Accepted Submission(s): 3831


    Problem Description
    Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.

    As an example, the maximal sub-rectangle of the array:

    0 -2 -7 0
    9 2 -6 2
    -4 1 -4 1
    -1 8 0 -2

    is in the lower left corner:

    9 2
    -4 1
    -1 8

    and has a sum of 15.
     
    Input
    The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
     
    Output
    Output the sum of the maximal sub-rectangle.
     
    Sample Input
    4
    0 -2 -7 0
    9 2 -6 2
    -4 1 -4 1
    -1 8 0 -2
     
    Sample Output
    15

     二维最大连续子段和,枚举列数(i->j)第i列到第j列,计算每一行第i列到第j列的和,然后用每一行的这个和用一维的求最大连续子序列的和的方法求就行了,

    求和的时候可以预处理一下,ma[i][j]表示第i行前j列的和,这样求第i列到第j列的和就可以用ma[k][j] - ma[k][i-1]表示。

    #include <stdio.h>
    #include <string.h>
    #define N 105
    #define INF 0x3f3f3f3f
    int ma[N][N];
    int main()
    {
        int n,i,j,k,maxx,sum;
        while(~scanf("%d",&n))
        {
            memset(ma,0,sizeof(ma));
            for(i = 1; i<= n ; i++)
            {
                for(j = 1 ; j<= n ;j++)
                {
                    scanf("%d",&ma[i][j]);
                    ma[i][j]+=ma[i][j-1];
                }
            }
            sum = 0 ;maxx = -INF;
            for(i = 1 ; i <= n ; i++)
            {
                for(j = i ; j <= n ; j++)
                {
                    //printf("%d ",ma[i][j]);
                    sum = 0;
                    for(k = 1 ; k<= n ; k++)
                    {
                        //if(sum==17) printf("i = %d j = %d k = %d
    ",i,j,k);
                        sum+=ma[k][j] - ma[k][i-1];
                        if(sum>maxx) maxx = sum;
                        if(sum<0) sum = 0;
                    }
                }
               // printf("
    ");
            }
            printf("%d
    ",maxx);
        }
        return 0;
    }
  • 相关阅读:
    终于想起了博客园密码
    关于GCD的8题
    idea快捷键 ctrl + shift + f 失效解决方法
    前端和后端日期类型交互
    poi、easypoi和easyexcel的使用
    事务总结
    数据库cte的理解和使用
    mybatis 调用存储过程没有返回值
    postgresql 查询锁表并解锁
    tigase网络核心SockThread详解(十九)
  • 原文地址:https://www.cnblogs.com/llei1573/p/3851885.html
Copyright © 2020-2023  润新知