• Flink sql 之 两阶段聚合与 TwoStageOptimizedAggregateRule(源码分析)


    本文源码基于flink1.14

    上一篇文章分析了《flink的minibatch微批处理》的源码

    乘热打铁分析一下两阶段聚合的源码,因为使用两阶段要先开启minibatch,至于为什么后面会分析到

    两阶段聚合的原理,还是简单提一下

    如下图,当聚合发生热点的时候,可以在聚合前,先进行一个本地的聚合,先减小数据量,后接正常的数据交换以后聚合,来达到一个解热点的目的,

    先来看下两阶段聚合的Calcite优化rule

     看下什么情况会匹配上

    并且在onmatch方法中会判断开启了minibatch,以及二阶段聚合的时候会调用

    来看下具体逻辑match方法

    整个两阶段聚合会将原来的一个StreamPhysicalGroupAggregate物理节点,转换成一个

    StreamPhysicalLocalGroupAggregate本地聚合节点 + StreamPhysicalGlobalGroupAggregate聚合节点

    来看下这个新添加的StreamPhysicalLocalGroupAggregate本地聚合算子的计算逻辑是什么样子的

    StreamExecLocalGroupAggragate就是StreamPhysicalLocalGroupAggregate本地聚合具体的ExecNode节点了

    来看下具体的operator

    看到这里是不是看到了熟悉的 MapBundleOperator ,如果看过上一篇minibatch优化的就知道,两阶段提交也是使用的这个有界operator作为抽象

    在了解一下这个MapBundleOperator

    就是每来一条数据,都会调用传入的fun的addInput方法

    然后把每个key的结果put保存在一个本地变量,就是个map<Rowdata,Rowdata>里面

    然后调用自己的trigger触发器,当这条数据可以触发触发器就会调用finishBundle

    这里说到触发器,回到初始化mapBundle的时候通过createMiniBatchTrigger创建的一个minibatch的触发器,看看具体逻辑

    其实就是一个普通的count触发器,触发条件就是直接使用的minibatch配置的size参数,  所以这里知道了为什么两阶段提交要先开minibatch了

    先看下每来一条数据会触发的addInput方法,在来看看攒一个批次后触发的finishBundle

    minibatch会包装成一个MiniBatchLocalGroupAggFunction这个funtion的addInput来看看

    就是来一条数据直接调用聚合函数的accumulate直接计算结果了,虽然计算结果但是还没有往下游发送

     来看下当攒一批后,集体是怎么往下游发送的 finishBundle 方法

     结果都已经计算好了,攒一个批次还能干嘛,就是把当前的计算结果往下游发送呗

    那整个二次聚合的优化就讲完了

    总结一下

    sql会将agg拆成 localminiagg + agg

    先在本地聚合localConbine一遍,再往下游发送

    下游就正常聚合,优化了热点的问题

  • 相关阅读:
    linux修改时间
    关于PGSQL连接问题
    windows与linux的文件路径
    node js 判断数组中是否包含某个值
    cmd设置utf8编码
    Spring异步请求处理
    Spring任务执行和任务调度
    Tomcat线程池配置
    Apache HttpClient和HttpAsyncClient应用
    FreeMarker导出复杂Excel
  • 原文地址:https://www.cnblogs.com/ljygz/p/15771889.html
Copyright © 2020-2023  润新知