1. K-SVD usage:
Design/Learn a dictionary adaptively to betterfit the model and achieve sparse signal representations.
2. Main Problem:
Y = DX
Where Y∈R(n*N), D∈R(n*K), X∈R(k*N), X is a sparse matrix.
3. Objective function
4. K-SVD的求解
Iterative solution: 求X的系数编码(MP/OMP/BP/FOCUSS),更新字典(Regression).
K-SVD优化:也是K-SVD与MOD的不同之处,字典的逐列更新:
假设系数X和字典D都是固定的,要更新字典的第k列dk,领稀疏矩阵X中与dk相乘的第k行记做,则目标函数可以重写为:
上式中,DX被分解为K个秩为1的矩阵的和,假设其中K-1项都是固定的,剩下的1列就是要处理更新的第k个。矩阵Ek表示去掉原子dk的成分在所有N个样本中造成的误差。
5. 提取稀疏项
如果在4.中这一步就用SVD更新dk和,SVD能找到距离Ek最近的秩为1的矩阵,但这样得到的系数不稀疏,换句话说,与更新dk前的非零元所处位置和value不一样。那怎么办呢?直观地想,只保留系数中的非零值,再进行SVD分解就不会出现这种现象了。所以对Ek和做变换,中只保留x中非零位置的,Ek只保留dk和中非零位置乘积后的那些项。形成,将做SVD分解,更新dk。
6. 总结
K-SVD总可以保证误差单调下降或不变,但需要合理设置字典大小和稀疏度。
参考:http://blog.csdn.net/abcjennifer/article/details/8693342