题意:
给你一个正整数数组 nums
,你需要从中任选一些子集,然后将子集中每一个数乘以一个 任意整数,并求出他们的和。
假如该和结果为 1
,那么原数组就是一个「好数组」,则返回 True
;否则请返回 False
。
示例 1:
输入:nums = [12,5,7,23] 输出:true 解释:挑选数字 5 和 7。 5*3 + 7*(-2) = 1
示例 2:
输入:nums = [29,6,10] 输出:true 解释:挑选数字 29, 6 和 10。 29*1 + 6*(-3) + 10*(-1) = 1
示例 3:
输入:nums = [3,6] 输出:false
提示:
1 <= nums.length <= 10^5
1 <= nums[i] <= 10^9
思路:裴蜀定理的应用。
n个整数间的裴蜀定理:
设a1,a2,a3......an为n个整数,d是它们的最大公约数,那么存在整数x1......xn使得x1*a1+x2*a2+...xn*an=d。
特别来说,如果a1...an互质(不是两两互质),那么存在整数x1......xn使得x1*a1+x2*a2+...xn*an=1。证法类似两个数的情况。
1 class Solution { 2 public: 3 int gcd(int a,int b){ 4 if(b==0)return a; 5 return gcd(b,a%b); 6 } 7 bool isGoodArray(vector<int>& nums) { 8 int n=nums.size(),g=nums[0]; 9 for(int i=1;i<n;i++){ 10 g=gcd(g,nums[i]); 11 if(g==1)return true; 12 } 13 if(g==1)return true; 14 return false; 15 } 16 };