• NLPIR智能挖掘实现行业大数据应用价值


      随着大数据应用日益渗透到各行各业中,数据所蕴含着的巨大商业价值也越来越为人们所重视,数据日益成为重要的企业资产和国家战略资源。数据资源通过交易流通,能释放更大的价值,提升生产效率,推进产业创新。通过市场化的手段来促进数据流通成为一种趋势,数据交易市场应运而生。

      大数据价值的发现与其所处的应用场景密切相关。概括起来,大数据价值发现可以划分为三大类:数据服务、数据分析和数据探索。数据服务是面向大规模用户,提供高性能的数据查询、检索、预测等服务,通过直接满足用户需求而将数据价值变现的形式;数据分析是分析人员利用经验,通过对大规模数据使用特定的计算模型进行较为复杂的运算,从而发现易于人们理解的数据模式或规律所进行的数据价值变现的一种运算形式;数据探索是一种利用数据分析和人机交互的结合,通过不断揭示数据的规律和数据间的关联,引导分析人员发现并认识其所未知的数据模式或规律,其价值更多地体现在对未知途径的数据模式和规律的探索。

      1.数据服务

      数据服务针对用户非常明确的数据查询和处理任务,以高性能和高吞吐量的方式实现大众化的服务,是数据价值最重要也是最直接的发现方式。由于要处理大众化的服务请求,每个服务任务必须能够被快速地处理掉,因此,数据服务的单个任务负载不能过于复杂,单任务直接处理的数据不能太大,任务对应的用户需求和采用的数据处理方法必须是明确的。一些典型的数据服务包括事务处理、数据查询、信息检索、数据预测。

      2.数据分析

       数据分析是指用适当的统计分析方法对大量数据进行分析或建模,提取有用信息并形成结论,进而辅助人们决策的过程。在这个过程中,用户会有一个明确的目标,通过“数据清 理、转换、建模、统计”等一系列复杂的操作,获得对数据的洞察,从而协助用户进行决策。常见的数据分析任务又可以被进一步划分为描述型分析、诊断型分析、预测型分析、策略型分析。

      4.数据探索

       数据探索是指针对目标可变、持续、多角度的搜索或分析任务,其搜索过程是有选择、有策略和反复进行的。它将以找到信息为目的的传统信息检索模式变为以发现、学习和决策为目的的信息搜寻模式。这样的搜索模式结合了大量的数据分析与人机交互过程,适合于人们从数据中发现和学习更多的内容和价值。

      对于数据探索,用户可以在微观层面(数据搜索)和宏观层面(数据分析)之间进行自由切换,用交互式的方式探索并发现数据的价值。

      北京理工大学大数据搜索与挖掘实验室张华平主任研发的NLPIR大数据语义智能分析技术是满足大数据挖掘对语法、词法和语义的综合应用。NLPIR大数据语义智能分析平台是根据中文数据挖掘的综合需求,融合了网络精准采集、自然语言理解、文本挖掘和语义搜索的研究成果,并针对互联网内容处理的全技术链条的共享开发平台。

      NLPIR大数据语义智能分析平台主要有精准采集、文档转化、新词发现、批量分词、语言统计、文本聚类、文本分类、摘要实体、智能过滤、情感分析、文档去重、全文检索、编码转换等十余项功能模块,平台提供了客户端工具,云服务与二次开发接口等多种产品使用形式。各个中间件API可以无缝地融合到客户的各类复杂应用系统之中,可兼容Windows,Linux, Android,Maemo5, FreeBSD等不同操作系统平台,可以供Java,Python,C,C#等各类开发语言使用。

      数据挖掘技术及其应用是目前国际上的一个研究热点,并在许多行业中得到了很好的应用,尤其是在市场营销中获得了成功,初步体现了其优越性和发展潜力。在信息管理领域,综合应用数据挖掘技术和人工智能技术,获取用户知识、文献知识等各类知识,将是实现知识检索和知识管理发展的必经之路。

  • 相关阅读:
    idea 的maven窗口中dependencies有红线
    因SpringBootApplication指定scanBasePackages后,出现问题
    You have an error in your SQL syntax
    如何在Interceptor中使用@Autowired
    idea如何修改默认的${user}值
    idea如何创建类和接口时,自动添加类注释或接口注释?
    安装postman时报错
    https网站如何访问http接口
    Docker启动tomcat容器后访问404
    Python中and_Or
  • 原文地址:https://www.cnblogs.com/ljrj/p/10430009.html
Copyright © 2020-2023  润新知