本文分为三个部分
- JS 数字精度丢失的一些典型问题
- JS 数字精度丢失的原因
- 解决方案(一个对象+一个函数)
一、JS数字精度丢失的一些典型问题
1. 两个简单的浮点数相加
1
|
0.1 + 0.2 != 0.3 // true |
Firebug
这真不是 Firebug 的问题,可以用alert试试 (哈哈开玩笑)。
看看Java的运算结果
再看看Python
2. 大整数运算
1
|
9999999999999999 == 10000000000000001 // ? |
Firebug
16位和17位数竟然相等,没天理啊。
又如
1
2
|
var x = 9007199254740992 x + 1 == x // ? |
看结果
三观又被颠覆了。
3. toFixed 不会四舍五入(Chrome)
1
|
1.335.toFixed(2) // 1.33 |
Firebug
线上曾经发生过 Chrome 中价格和其它浏览器不一致,正是因为 toFixed 兼容性问题导致
二、JS 数字丢失精度的原因
计算机的二进制实现和位数限制有些数无法有限表示。就像一些无理数不能有限表示,如 圆周率 3.1415926...,1.3333... 等。JS 遵循 IEEE 754 规范,采用双精度存储(double precision),占用 64 bit。如图
意义
- 1位用来表示符号位
- 11位用来表示指数
- 52位表示尾数
浮点数,比如
1
2
|
0.1 >> 0.0001 1001 1001 1001…(1001无限循环) 0.2 >> 0.0011 0011 0011 0011…(0011无限循环) |
此时只能模仿十进制进行四舍五入了,但是二进制只有 0 和 1 两个,于是变为 0 舍 1 入。这即是计算机中部分浮点数运算时出现误差,丢失精度的根本原因。
大整数的精度丢失和浮点数本质上是一样的,尾数位最大是 52 位,因此 JS 中能精准表示的最大整数是 Math.pow(2, 53),十进制即 9007199254740992。
大于 9007199254740992 的可能会丢失精度
1
2
3
|
9007199254740992 >> 10000000000000...000 // 共计 53 个 0 9007199254740992 + 1 >> 10000000000000...001 // 中间 52 个 0 9007199254740992 + 2 >> 10000000000000...010 // 中间 51 个 0 |
实际上
1
2
3
4
|
9007199254740992 + 1 // 丢失 9007199254740992 + 2 // 未丢失 9007199254740992 + 3 // 丢失 9007199254740992 + 4 // 未丢失 |
结果如图
以上,可以知道看似有穷的数字, 在计算机的二进制表示里却是无穷的,由于存储位数限制因此存在“舍去”,精度丢失就发生了。
想了解更深入的分析可以看这篇论文:What Every Computer Scientist Should Know About Floating-Point Arithmetic
三、解决方案
对于整数,前端出现问题的几率可能比较低,毕竟很少有业务需要需要用到超大整数,只要运算结果不超过 Math.pow(2, 53) 就不会丢失精度。
对于小数,前端出现问题的几率还是很多的,尤其在一些电商网站涉及到金额等数据。解决方式:把小数放到位整数(乘倍数),再缩小回原来倍数(除倍数)
1
2
|
// 0.1 + 0.2 (0.1*10 + 0.2*10) / 10 == 0.3 // true |
以下是我写了一个对象,对小数的加减乘除运算丢失精度做了屏蔽。当然转换后的整数依然不能超过 9007199254740992。
toFixed的修复如下
相关:
http://0.30000000000000004.com
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html