• 本地通过Eclipse链接Hadoop操作Mysql数据库问题小结


          前一段时间,在上一篇博文中描述了自己抽时间在构建的完全分布式Hadoop环境过程中遇到的一些问题以及构建成功后,通过Eclipse操作HDFS的时候遇到的一些问题,最近又想进一步学习学习Hadoop操作Mysql数据库的一些知识,在这里网上存在很多分歧,很多人可能会笑话,用那么“笨重”的Hadoop来操作数据库,脑子有问题吧,Hadoop的HDFS优势在于处理分布式文件系统,这种说法没有任何错误,数据库的操作讲究“安全、轻便、快捷”,用Hadoop操作完全是不符合常理啊,那为啥还要学习这个东西呢?其实退一步讲,在之前access数据库的应用占一定份额的时候,很多人选择使用文件作为数据的仓储,增删查改全部是操作文件,一个文件可能就是一个数据库或者一个数据表,那么对于一些实时性要求不是很高且数据量比较小的操作,选择用hadoop操作数据库,其实说来也不是不可以考录,不说了,每个人有自己的观点,当然这个也与每个人所在的公司的要求有关系,下面就说说自己遇到的比较恼人的一个问题:还是classNotFound的问题:

    首先要说明的是:你的运行环境,先的明白你的代码到底是在服务器端还是在本地,其次再参考不同的代码进行模拟。

    参考文章:http://www.cnblogs.com/xia520pi/archive/2012/06/12/2546261.html项目的简单结构:

    下面说说本地运行的时候3种classNotFount的问题

    (1)MySql的驱动找不到,这个很容易解决,在自己的项目中引入MySql的官方驱动jar包就可以解决了,如上图红色框

    (2)对JDBC的Jar包处理

          因为程序虽然用Eclipse编译运行但最终要提交到Hadoop集群上,所以JDBC的jar必须放到Hadoop集群中。有两种方式:

          <1>在每个节点下的${HADOOP_HOME}/lib下添加该包,重启集群,一般是比较原始的方法。

          我们的Hadoop安装包在"/usr/hadoop",所以把Jar放到"/usr/hadoop/lib"下面,然后重启,记得是Hadoop集群中所有的节点都要放,因为执行分布式是程序是在每个节点本地机器上进行。

          <2>在Hadoop集群的分布式文件系统中创建"/lib"文件夹,并把我们的的JDBC的jar包上传上去,然后在主程序添加如下语句,就能保证 Hadoop集群中所有的节点都能使用这个jar包。因为这个jar包放在了HDFS上,而不是本地系统,这个要理解清楚。

    (3)关联数据库表的实体类找不到(本篇文章解决的重点),StudentRecord.class not found。。。。

    出现此问题的源代码如下:

      1 package cn.hadoop.db;
      2 
      3 import java.io.DataInput;
      4 import java.io.DataOutput;
      5 import java.io.IOException;
      6 import java.net.URI;
      7 import java.sql.PreparedStatement;
      8 import java.sql.ResultSet;
      9 import java.sql.SQLException;
     10 
     11 import org.apache.hadoop.filecache.DistributedCache;
     12 import org.apache.hadoop.fs.FileSystem;
     13 import org.apache.hadoop.fs.Path;
     14 import org.apache.hadoop.io.LongWritable;
     15 import org.apache.hadoop.io.Text;
     16 import org.apache.hadoop.io.Writable;
     17 import org.apache.hadoop.mapred.FileOutputFormat;
     18 import org.apache.hadoop.mapred.JobClient;
     19 import org.apache.hadoop.mapred.JobConf;
     20 import org.apache.hadoop.mapred.MapReduceBase;
     21 import org.apache.hadoop.mapred.Mapper;
     22 import org.apache.hadoop.mapred.OutputCollector;
     23 import org.apache.hadoop.mapred.Reporter;
     24 import org.apache.hadoop.mapred.lib.IdentityReducer;
     25 import org.apache.hadoop.mapred.lib.db.DBConfiguration;
     26 import org.apache.hadoop.mapred.lib.db.DBInputFormat;
     27 import org.apache.hadoop.mapred.lib.db.DBWritable;
     28 
     29 import cn.hadoop.db.DBAccessReader.Student.DBInputMapper;
     30 
     31 public class DBAccessReader {
     32     
     33     public static class Student implements Writable, DBWritable{
     34         public int id;
     35         public  String name;
     36         public  String sex;
     37         public  int age;
     38         
     39         public Student() {
     40             
     41         }
     42         @Override
     43         public void write(PreparedStatement statement) throws SQLException {
     44             statement.setInt(1, this.id);
     45             statement.setString(2, this.name);
     46             statement.setString(3, this.sex);
     47             statement.setInt(4, this.age);
     48         }
     49 
     50         @Override
     51         public void readFields(ResultSet resultSet) throws SQLException {
     52             this.id = resultSet.getInt(1);
     53             this.name = resultSet.getString(2);
     54             this.sex = resultSet.getString(3);
     55             this.age = resultSet.getInt(4);
     56         }
     57 
     58         @Override
     59         public void write(DataOutput out) throws IOException {
     60             out.writeInt(this.id);
     61             Text.writeString(out, this.name);
     62             Text.writeString(out, this.sex);
     63             out.writeInt(this.age);
     64         }
     65 
     66         @Override
     67         public void readFields(DataInput in) throws IOException {
     68             this.id = in.readInt();
     69             this.name = Text.readString(in);
     70             this.sex = Text.readString(in);
     71             this.age = in.readInt();
     72         }
     73 
     74         @Override
     75         public String toString() {
     76             return new String("Student [id=" + id + ", name=" + name + ", sex=" + sex
     77                     + ", age=" + age + "]");
     78         }
     79         
     80         public static class DBInputMapper extends MapReduceBase implements Mapper<LongWritable, cn.hadoop.db.DBAccessReader.Student, LongWritable, Text>{
     81 
     82             @Override
     83             public void map(LongWritable key, cn.hadoop.db.DBAccessReader.Student value,
     84                     OutputCollector<LongWritable, Text> collector,
     85                     Reporter reporter) throws IOException {
     86                 collector.collect(new LongWritable(value.id), new Text(value.toString()));
     87                 
     88             }
     89             
     90         }
     91         
     92         
     93         
     94     }
     95     public static void main(String[] args) throws IOException{
     96         
     97         JobConf conf = new JobConf(DBAccessReader.class);
     98         conf.set("mapred.job.tracker", "192.168.56.10:9001"); 
     99         
    100             FileSystem fileSystem = FileSystem.get(
    101                     URI.create("hdfs://192.168.56.10:9000/"), conf);
    102             
    103             DistributedCache
    104             .addFileToClassPath(
    105                     new Path(
    106                             "hdfs://192.168.56.10:9000/lib/mysql-connector-java-5.1.18-bin.jar"),
    107                             conf, fileSystem);
    108         conf.setOutputKeyClass(LongWritable.class);
    109         conf.setOutputValueClass(Text.class);
    110 
    111         conf.setInputFormat(DBInputFormat.class);
    112 
    113 
    114 
    115         FileOutputFormat.setOutputPath(conf, new Path(
    116                 "hdfs://192.168.56.10:9000/user/studentInfo"));
    117 
    118         DBConfiguration.configureDB(conf, "com.mysql.jdbc.Driver",
    119                 "jdbc:mysql://192.168.56.109:3306/school", "root", "1qaz2wsx");
    120 
    121         String[] fields = { "id", "name", "sex", "age" };
    122 
    123         DBInputFormat.setInput(conf, cn.hadoop.db.DBAccessReader.Student.class, "student", null,
    124                 "id", fields);
    125 
    126         conf.setMapperClass(DBInputMapper.class);
    127         conf.setReducerClass(IdentityReducer.class);
    128         
    129             JobClient.runJob(conf);
    130     }
    131 }

    运行的时候,报的错误如下:

    错误很明显,就是找不到实体类Student,可是看代码好多遍,这个类明明在啊,为啥会报错找不到呢???我也迷糊了很长时间,各种尝试都是不行,最后还是将目标锁定在日志信息里面,很明显,这是在服务器端去找DBAccessReader这个Job的jar,明显我们没有上传,肯定是找不到到,所以报错,错误很明显,就在main方法下面的这里:

    1 JobConf conf = new JobConf(DBAccessReader.class);
    2 conf.set("mapred.job.tracker", "192.168.56.10:9001"); 

    所以,修改代码如下以后,问题得到解决:

      1 package cn.hadoop.db;
      2 
      3 import java.io.DataInput;
      4 import java.io.DataOutput;
      5 import java.io.IOException;
      6 import java.net.URI;
      7 import java.sql.PreparedStatement;
      8 import java.sql.ResultSet;
      9 import java.sql.SQLException;
     10 
     11 import org.apache.hadoop.filecache.DistributedCache;
     12 import org.apache.hadoop.fs.FileSystem;
     13 import org.apache.hadoop.fs.Path;
     14 import org.apache.hadoop.io.LongWritable;
     15 import org.apache.hadoop.io.Text;
     16 import org.apache.hadoop.io.Writable;
     17 import org.apache.hadoop.mapred.FileOutputFormat;
     18 import org.apache.hadoop.mapred.JobClient;
     19 import org.apache.hadoop.mapred.JobConf;
     20 import org.apache.hadoop.mapred.MapReduceBase;
     21 import org.apache.hadoop.mapred.Mapper;
     22 import org.apache.hadoop.mapred.OutputCollector;
     23 import org.apache.hadoop.mapred.Reporter;
     24 import org.apache.hadoop.mapred.lib.IdentityReducer;
     25 import org.apache.hadoop.mapred.lib.db.DBConfiguration;
     26 import org.apache.hadoop.mapred.lib.db.DBInputFormat;
     27 import org.apache.hadoop.mapred.lib.db.DBWritable;
     28 
     29 import cn.hadoop.db.DBAccessReader.Student.DBInputMapper;
     30 
     31 public class DBAccessReader {
     32 
     33     public static class Student implements Writable, DBWritable {
     34         public int id;
     35         public String name;
     36         public String sex;
     37         public int age;
     38 
     39         public Student() {
     40 
     41         }
     42 
     43         @Override
     44         public void write(PreparedStatement statement) throws SQLException {
     45             statement.setInt(1, this.id);
     46             statement.setString(2, this.name);
     47             statement.setString(3, this.sex);
     48             statement.setInt(4, this.age);
     49         }
     50 
     51         @Override
     52         public void readFields(ResultSet resultSet) throws SQLException {
     53             this.id = resultSet.getInt(1);
     54             this.name = resultSet.getString(2);
     55             this.sex = resultSet.getString(3);
     56             this.age = resultSet.getInt(4);
     57         }
     58 
     59         @Override
     60         public void write(DataOutput out) throws IOException {
     61             out.writeInt(this.id);
     62             Text.writeString(out, this.name);
     63             Text.writeString(out, this.sex);
     64             out.writeInt(this.age);
     65         }
     66 
     67         @Override
     68         public void readFields(DataInput in) throws IOException {
     69             this.id = in.readInt();
     70             this.name = Text.readString(in);
     71             this.sex = Text.readString(in);
     72             this.age = in.readInt();
     73         }
     74 
     75         @Override
     76         public String toString() {
     77             return new String("Student [id=" + id + ", name=" + name + ", sex="
     78                     + sex + ", age=" + age + "]");
     79         }
     80 
     81         public static class DBInputMapper extends MapReduceBase
     82                 implements
     83                 Mapper<LongWritable, cn.hadoop.db.DBAccessReader.Student, LongWritable, Text> {
     84 
     85             @Override
     86             public void map(LongWritable key,
     87                     cn.hadoop.db.DBAccessReader.Student value,
     88                     OutputCollector<LongWritable, Text> collector,
     89                     Reporter reporter) throws IOException {
     90                 collector.collect(new LongWritable(value.id),
     91                         new Text(value.toString()));
     92 
     93             }
     94 
     95         }
     96 
     97     }
     98 
     99     public static void main(String[] args) throws IOException {
    100 
    101         JobConf conf = new JobConf();
    102         FileSystem fileSystem = FileSystem.get(
    103                 URI.create("hdfs://192.168.56.10:9000/"), conf);
    104 
    105         DistributedCache
    106                 .addFileToClassPath(
    107                         new Path(
    108                                 "hdfs://192.168.56.10:9000/lib/mysql-connector-java-5.1.18-bin.jar"),
    109                         conf, fileSystem);
    110         conf.setOutputKeyClass(LongWritable.class);
    111         conf.setOutputValueClass(Text.class);
    112 
    113         conf.setInputFormat(DBInputFormat.class);
    114 
    115         FileOutputFormat.setOutputPath(conf, new Path(
    116                 "hdfs://192.168.56.10:9000/user/studentInfo"));
    117 
    118         DBConfiguration.configureDB(conf, "com.mysql.jdbc.Driver",
    119                 "jdbc:mysql://192.168.56.109:3306/school", "root", "1qaz2wsx");
    120 
    121         String[] fields = { "id", "name", "sex", "age" };
    122 
    123         DBInputFormat.setInput(conf, cn.hadoop.db.DBAccessReader.Student.class,
    124                 "student", null, "id", fields);
    125 
    126         conf.setMapperClass(DBInputMapper.class);
    127         conf.setReducerClass(IdentityReducer.class);
    128 
    129         JobClient.runJob(conf);
    130     }
    131 }

    以下是运行时打印出的日志信息:

    三月 13, 2016 5:39:57 下午 org.apache.hadoop.util.NativeCodeLoader <clinit>
    警告: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
    三月 13, 2016 5:39:57 下午 org.apache.hadoop.mapred.JobClient copyAndConfigureFiles
    警告: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
    三月 13, 2016 5:39:57 下午 org.apache.hadoop.mapred.JobClient copyAndConfigureFiles
    警告: No job jar file set.  User classes may not be found. See JobConf(Class) or JobConf#setJar(String).
    三月 13, 2016 5:39:57 下午 org.apache.hadoop.filecache.TrackerDistributedCacheManager downloadCacheObject
    信息: Creating mysql-connector-java-5.1.18-bin.jar in /tmp/hadoop-hadoop/mapred/local/archive/2605709384407216388_-2048973133_91096108/192.168.56.10/lib-work-2076365714246383853 with rwxr-xr-x
    三月 13, 2016 5:39:58 下午 org.apache.hadoop.filecache.TrackerDistributedCacheManager downloadCacheObject
    信息: Cached hdfs://192.168.56.10:9000/lib/mysql-connector-java-5.1.18-bin.jar as /tmp/hadoop-hadoop/mapred/local/archive/2605709384407216388_-2048973133_91096108/192.168.56.10/lib/mysql-connector-java-5.1.18-bin.jar
    三月 13, 2016 5:39:58 下午 org.apache.hadoop.filecache.TrackerDistributedCacheManager localizePublicCacheObject
    信息: Cached hdfs://192.168.56.10:9000/lib/mysql-connector-java-5.1.18-bin.jar as /tmp/hadoop-hadoop/mapred/local/archive/2605709384407216388_-2048973133_91096108/192.168.56.10/lib/mysql-connector-java-5.1.18-bin.jar
    三月 13, 2016 5:39:58 下午 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
    信息: Running job: job_local_0001
    三月 13, 2016 5:39:59 下午 org.apache.hadoop.mapred.Task initialize
    信息:  Using ResourceCalculatorPlugin : null
    三月 13, 2016 5:39:59 下午 org.apache.hadoop.mapred.MapTask runOldMapper
    信息: numReduceTasks: 1
    三月 13, 2016 5:39:59 下午 org.apache.hadoop.mapred.MapTask$MapOutputBuffer <init>
    信息: io.sort.mb = 100
    三月 13, 2016 5:39:59 下午 org.apache.hadoop.mapred.MapTask$MapOutputBuffer <init>
    信息: data buffer = 79691776/99614720
    三月 13, 2016 5:39:59 下午 org.apache.hadoop.mapred.MapTask$MapOutputBuffer <init>
    信息: record buffer = 262144/327680
    三月 13, 2016 5:39:59 下午 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
    信息:  map 0% reduce 0%
    三月 13, 2016 5:40:04 下午 org.apache.hadoop.mapred.MapTask$MapOutputBuffer flush
    信息: Starting flush of map output
    三月 13, 2016 5:40:04 下午 org.apache.hadoop.mapred.MapTask$MapOutputBuffer sortAndSpill
    信息: Finished spill 0
    三月 13, 2016 5:40:04 下午 org.apache.hadoop.mapred.Task done
    信息: Task:attempt_local_0001_m_000000_0 is done. And is in the process of commiting
    三月 13, 2016 5:40:04 下午 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息:
    三月 13, 2016 5:40:04 下午 org.apache.hadoop.mapred.Task sendDone
    信息: Task 'attempt_local_0001_m_000000_0' done.
    三月 13, 2016 5:40:05 下午 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
    信息:  map 100% reduce 0%
    三月 13, 2016 5:40:05 下午 org.apache.hadoop.mapred.Task initialize
    信息:  Using ResourceCalculatorPlugin : null
    三月 13, 2016 5:40:05 下午 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息:
    三月 13, 2016 5:40:05 下午 org.apache.hadoop.mapred.Merger$MergeQueue merge
    信息: Merging 1 sorted segments
    三月 13, 2016 5:40:05 下午 org.apache.hadoop.mapred.Merger$MergeQueue merge
    信息: Down to the last merge-pass, with 1 segments left of total size: 542 bytes
    三月 13, 2016 5:40:05 下午 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息:
    三月 13, 2016 5:40:06 下午 org.apache.hadoop.mapred.Task done
    信息: Task:attempt_local_0001_r_000000_0 is done. And is in the process of commiting
    三月 13, 2016 5:40:06 下午 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息:
    三月 13, 2016 5:40:06 下午 org.apache.hadoop.mapred.Task commit
    信息: Task attempt_local_0001_r_000000_0 is allowed to commit now
    三月 13, 2016 5:40:06 下午 org.apache.hadoop.mapred.FileOutputCommitter commitTask
    信息: Saved output of task 'attempt_local_0001_r_000000_0' to hdfs://192.168.56.10:9000/user/studentInfo
    三月 13, 2016 5:40:08 下午 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: reduce > reduce
    三月 13, 2016 5:40:08 下午 org.apache.hadoop.mapred.Task sendDone
    信息: Task 'attempt_local_0001_r_000000_0' done.
    三月 13, 2016 5:40:09 下午 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
    信息:  map 100% reduce 100%
    三月 13, 2016 5:40:09 下午 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
    信息: Job complete: job_local_0001
    三月 13, 2016 5:40:09 下午 org.apache.hadoop.mapred.Counters log
    信息: Counters: 20
    三月 13, 2016 5:40:09 下午 org.apache.hadoop.mapred.Counters log
    信息:   File Input Format Counters
    三月 13, 2016 5:40:09 下午 org.apache.hadoop.mapred.Counters log
    信息:     Bytes Read=0
    三月 13, 2016 5:40:09 下午 org.apache.hadoop.mapred.Counters log
    信息:   File Output Format Counters
    三月 13, 2016 5:40:09 下午 org.apache.hadoop.mapred.Counters log
    信息:     Bytes Written=513
    三月 13, 2016 5:40:09 下午 org.apache.hadoop.mapred.Counters log
    信息:   FileSystemCounters
    三月 13, 2016 5:40:09 下午 org.apache.hadoop.mapred.Counters log
    信息:     FILE_BYTES_READ=1592914
    三月 13, 2016 5:40:09 下午 org.apache.hadoop.mapred.Counters log
    信息:     HDFS_BYTES_READ=1579770
    三月 13, 2016 5:40:09 下午 org.apache.hadoop.mapred.Counters log
    信息:     FILE_BYTES_WRITTEN=3270914
    三月 13, 2016 5:40:09 下午 org.apache.hadoop.mapred.Counters log
    信息:     HDFS_BYTES_WRITTEN=513
    三月 13, 2016 5:40:09 下午 org.apache.hadoop.mapred.Counters log
    信息:   Map-Reduce Framework
    三月 13, 2016 5:40:09 下午 org.apache.hadoop.mapred.Counters log
    信息:     Reduce input groups=9
    三月 13, 2016 5:40:09 下午 org.apache.hadoop.mapred.Counters log
    信息:     Map output materialized bytes=546
    三月 13, 2016 5:40:09 下午 org.apache.hadoop.mapred.Counters log
    信息:     Combine output records=0
    三月 13, 2016 5:40:09 下午 org.apache.hadoop.mapred.Counters log
    信息:     Map input records=9
    三月 13, 2016 5:40:09 下午 org.apache.hadoop.mapred.Counters log
    信息:     Reduce shuffle bytes=0
    三月 13, 2016 5:40:09 下午 org.apache.hadoop.mapred.Counters log
    信息:     Reduce output records=9
    三月 13, 2016 5:40:09 下午 org.apache.hadoop.mapred.Counters log
    信息:     Spilled Records=18
    三月 13, 2016 5:40:09 下午 org.apache.hadoop.mapred.Counters log
    信息:     Map output bytes=522
    三月 13, 2016 5:40:09 下午 org.apache.hadoop.mapred.Counters log
    信息:     Total committed heap usage (bytes)=231874560
    三月 13, 2016 5:40:09 下午 org.apache.hadoop.mapred.Counters log
    信息:     Map input bytes=9
    三月 13, 2016 5:40:09 下午 org.apache.hadoop.mapred.Counters log
    信息:     Combine input records=0
    三月 13, 2016 5:40:09 下午 org.apache.hadoop.mapred.Counters log
    信息:     Map output records=9
    三月 13, 2016 5:40:09 下午 org.apache.hadoop.mapred.Counters log
    信息:     SPLIT_RAW_BYTES=75
    三月 13, 2016 5:40:09 下午 org.apache.hadoop.mapred.Counters log
    信息:     Reduce input records=9

    这是运行的结果:

    到此,Hadoop连接数据库读取数据表输出的操作完成了,当然这就是一个简单的演示,实际项目中不会用到,只是可以帮我们熟悉熟悉Hadoop操作数据库的流程,下面给出

    Hadoop处理文件以后,将结果写入数据库的示例代码,和上面的差不多:

      1 package cn.hadoop.db;
      2 
      3 import java.io.DataInput;
      4 import java.io.DataOutput;
      5 import java.io.IOException;
      6 import java.net.URI;
      7 import java.sql.PreparedStatement;
      8 import java.sql.ResultSet;
      9 import java.sql.SQLException;
     10 import java.util.Iterator;
     11 import java.util.StringTokenizer;
     12 
     13 import org.apache.hadoop.filecache.DistributedCache;
     14 import org.apache.hadoop.fs.FileSystem;
     15 import org.apache.hadoop.fs.Path;
     16 import org.apache.hadoop.io.IntWritable;
     17 import org.apache.hadoop.io.Text;
     18 import org.apache.hadoop.io.Writable;
     19 import org.apache.hadoop.mapred.FileInputFormat;
     20 import org.apache.hadoop.mapred.JobClient;
     21 import org.apache.hadoop.mapred.JobConf;
     22 import org.apache.hadoop.mapred.MapReduceBase;
     23 import org.apache.hadoop.mapred.Mapper;
     24 import org.apache.hadoop.mapred.OutputCollector;
     25 import org.apache.hadoop.mapred.Reducer;
     26 import org.apache.hadoop.mapred.Reporter;
     27 import org.apache.hadoop.mapred.TextInputFormat;
     28 import org.apache.hadoop.mapred.lib.db.DBConfiguration;
     29 import org.apache.hadoop.mapred.lib.db.DBOutputFormat;
     30 import org.apache.hadoop.mapred.lib.db.DBWritable;
     31 
     32 public class WriteDB {
     33 
     34     public static void main(String[] args) throws IOException {
     35         JobConf conf = new JobConf();
     36 
     37         FileSystem fileSystem = FileSystem.get(
     38                 URI.create("hdfs://192.168.56.10:9000/"), conf);
     39         DistributedCache
     40                 .addFileToClassPath(
     41                         new Path(
     42                                 "hdfs://192.168.56.10:9000/lib/mysql-connector-java-5.1.18-bin.jar"),
     43                         conf, fileSystem);
     44         conf.setInputFormat(TextInputFormat.class);
     45         conf.setOutputFormat(DBOutputFormat.class);
     46 
     47         conf.setOutputKeyClass(Text.class);
     48         conf.setOutputValueClass(IntWritable.class);
     49 
     50         conf.setMapperClass(Map.class);
     51         conf.setCombinerClass(Combine.class);
     52         conf.setReducerClass(Reduce.class);
     53 
     54         FileInputFormat.setInputPaths(conf, new Path(
     55                 "hdfs://192.168.56.10:9000/user/db_in"));
     56 
     57         DBConfiguration
     58                 .configureDB(
     59                         conf,
     60                         "com.mysql.jdbc.Driver",
     61                         "jdbc:mysql://192.168.56.109:3306/school?characterEncoding=UTF-8",
     62                         "root", "1qaz2wsx");
     63 
     64         String[] fields = { "word", "number" };
     65 
     66         DBOutputFormat.setOutput(conf, "wordcount", fields);
     67         JobClient.runJob(conf);
     68 
     69     }
     70 }
     71 
     72 class Map extends MapReduceBase implements
     73         Mapper<Object, Text, Text, IntWritable> {
     74 
     75     private final static IntWritable one = new IntWritable(1);
     76 
     77     private Text word = new Text();
     78 
     79     @Override
     80     public void map(Object key, Text value,
     81             OutputCollector<Text, IntWritable> output, Reporter reporter)
     82             throws IOException {
     83         String line = value.toString();
     84         StringTokenizer tokenizer = new StringTokenizer(line);
     85         while (tokenizer.hasMoreTokens()) {
     86             word.set(tokenizer.nextToken());
     87             output.collect(word, one);
     88         }
     89     }
     90 
     91 }
     92 
     93 class Combine extends MapReduceBase implements
     94         Reducer<Text, IntWritable, Text, IntWritable> {
     95 
     96     @Override
     97     public void reduce(Text key, Iterator<IntWritable> values,
     98             OutputCollector<Text, IntWritable> output, Reporter reporter)
     99             throws IOException {
    100         int sum = 0;
    101         while (values.hasNext()) {
    102             sum += values.next().get();
    103         }
    104         output.collect(key, new IntWritable(sum));
    105     }
    106 
    107 }
    108 
    109 class Reduce extends MapReduceBase implements
    110         Reducer<Text, IntWritable, WordRecord, Text> {
    111 
    112     @Override
    113     public void reduce(Text key, Iterator<IntWritable> values,
    114             OutputCollector<WordRecord, Text> output, Reporter reporter)
    115             throws IOException {
    116         int sum = 0;
    117         while (values.hasNext()) {
    118             sum += values.next().get();
    119         }
    120         WordRecord wordcount = new WordRecord();
    121         wordcount.word = key.toString();
    122         wordcount.number = sum;
    123         output.collect(wordcount, new Text());
    124     }
    125 
    126 }
    127 
    128 class WordRecord implements Writable, DBWritable {
    129 
    130     public String word;
    131     public int number;
    132 
    133     @Override
    134     public void write(PreparedStatement statement) throws SQLException {
    135         statement.setString(1, this.word);
    136         statement.setInt(2, this.number);
    137     }
    138 
    139     @Override
    140     public void readFields(ResultSet resultSet) throws SQLException {
    141         this.word = resultSet.getString(1);
    142         this.number = resultSet.getInt(2);
    143     }
    144 
    145     @Override
    146     public void write(DataOutput out) throws IOException {
    147         Text.writeString(out, this.word);
    148         out.writeInt(this.number);
    149     }
    150 
    151     @Override
    152     public void readFields(DataInput in) throws IOException {
    153         this.word = Text.readString(in);
    154         this.number = in.readInt();
    155     }
    156 
    157 }

    运行打印的日志信息如下:

    三月 13, 2016 6:09:31 下午 org.apache.hadoop.util.NativeCodeLoader <clinit>
    警告: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
    三月 13, 2016 6:09:31 下午 org.apache.hadoop.mapred.JobClient copyAndConfigureFiles
    警告: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
    三月 13, 2016 6:09:31 下午 org.apache.hadoop.mapred.JobClient copyAndConfigureFiles
    警告: No job jar file set.  User classes may not be found. See JobConf(Class) or JobConf#setJar(String).
    三月 13, 2016 6:09:31 下午 org.apache.hadoop.mapred.FileInputFormat listStatus
    信息: Total input paths to process : 2
    三月 13, 2016 6:09:32 下午 org.apache.hadoop.filecache.TrackerDistributedCacheManager downloadCacheObject
    信息: Creating mysql-connector-java-5.1.18-bin.jar in /tmp/hadoop-hadoop/mapred/local/archive/-8205516116475251282_-2048973133_91096108/192.168.56.10/lib-work-1371358416408211818 with rwxr-xr-x
    三月 13, 2016 6:09:33 下午 org.apache.hadoop.filecache.TrackerDistributedCacheManager downloadCacheObject
    信息: Cached hdfs://192.168.56.10:9000/lib/mysql-connector-java-5.1.18-bin.jar as /tmp/hadoop-hadoop/mapred/local/archive/-8205516116475251282_-2048973133_91096108/192.168.56.10/lib/mysql-connector-java-5.1.18-bin.jar
    三月 13, 2016 6:09:33 下午 org.apache.hadoop.filecache.TrackerDistributedCacheManager localizePublicCacheObject
    信息: Cached hdfs://192.168.56.10:9000/lib/mysql-connector-java-5.1.18-bin.jar as /tmp/hadoop-hadoop/mapred/local/archive/-8205516116475251282_-2048973133_91096108/192.168.56.10/lib/mysql-connector-java-5.1.18-bin.jar
    三月 13, 2016 6:09:33 下午 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
    信息: Running job: job_local_0001
    三月 13, 2016 6:09:33 下午 org.apache.hadoop.mapred.Task initialize
    信息:  Using ResourceCalculatorPlugin : null
    三月 13, 2016 6:09:33 下午 org.apache.hadoop.mapred.MapTask runOldMapper
    信息: numReduceTasks: 1
    三月 13, 2016 6:09:33 下午 org.apache.hadoop.mapred.MapTask$MapOutputBuffer <init>
    信息: io.sort.mb = 100
    三月 13, 2016 6:09:34 下午 org.apache.hadoop.mapred.MapTask$MapOutputBuffer <init>
    信息: data buffer = 79691776/99614720
    三月 13, 2016 6:09:34 下午 org.apache.hadoop.mapred.MapTask$MapOutputBuffer <init>
    信息: record buffer = 262144/327680
    三月 13, 2016 6:09:34 下午 org.apache.hadoop.mapred.MapTask$MapOutputBuffer flush
    信息: Starting flush of map output
    三月 13, 2016 6:09:34 下午 org.apache.hadoop.mapred.MapTask$MapOutputBuffer sortAndSpill
    信息: Finished spill 0
    三月 13, 2016 6:09:34 下午 org.apache.hadoop.mapred.Task done
    信息: Task:attempt_local_0001_m_000000_0 is done. And is in the process of commiting
    三月 13, 2016 6:09:34 下午 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
    信息:  map 0% reduce 0%
    三月 13, 2016 6:09:36 下午 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: hdfs://192.168.56.10:9000/user/db_in/file2.txt:0+41
    三月 13, 2016 6:09:36 下午 org.apache.hadoop.mapred.Task sendDone
    信息: Task 'attempt_local_0001_m_000000_0' done.
    三月 13, 2016 6:09:36 下午 org.apache.hadoop.mapred.Task initialize
    信息:  Using ResourceCalculatorPlugin : null
    三月 13, 2016 6:09:36 下午 org.apache.hadoop.mapred.MapTask runOldMapper
    信息: numReduceTasks: 1
    三月 13, 2016 6:09:36 下午 org.apache.hadoop.mapred.MapTask$MapOutputBuffer <init>
    信息: io.sort.mb = 100
    三月 13, 2016 6:09:36 下午 org.apache.hadoop.mapred.MapTask$MapOutputBuffer <init>
    信息: data buffer = 79691776/99614720
    三月 13, 2016 6:09:36 下午 org.apache.hadoop.mapred.MapTask$MapOutputBuffer <init>
    信息: record buffer = 262144/327680
    三月 13, 2016 6:09:36 下午 org.apache.hadoop.mapred.MapTask$MapOutputBuffer flush
    信息: Starting flush of map output
    三月 13, 2016 6:09:36 下午 org.apache.hadoop.mapred.MapTask$MapOutputBuffer sortAndSpill
    信息: Finished spill 0
    三月 13, 2016 6:09:36 下午 org.apache.hadoop.mapred.Task done
    信息: Task:attempt_local_0001_m_000001_0 is done. And is in the process of commiting
    三月 13, 2016 6:09:37 下午 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
    信息:  map 100% reduce 0%
    三月 13, 2016 6:09:39 下午 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: hdfs://192.168.56.10:9000/user/db_in/file1.txt:0+24
    三月 13, 2016 6:09:39 下午 org.apache.hadoop.mapred.Task sendDone
    信息: Task 'attempt_local_0001_m_000001_0' done.
    三月 13, 2016 6:09:39 下午 org.apache.hadoop.mapred.Task initialize
    信息:  Using ResourceCalculatorPlugin : null
    三月 13, 2016 6:09:39 下午 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: 
    三月 13, 2016 6:09:39 下午 org.apache.hadoop.mapred.Merger$MergeQueue merge
    信息: Merging 2 sorted segments
    三月 13, 2016 6:09:39 下午 org.apache.hadoop.mapred.Merger$MergeQueue merge
    信息: Down to the last merge-pass, with 2 segments left of total size: 116 bytes
    三月 13, 2016 6:09:39 下午 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: 
    三月 13, 2016 6:09:41 下午 org.apache.hadoop.mapred.Task done
    信息: Task:attempt_local_0001_r_000000_0 is done. And is in the process of commiting
    三月 13, 2016 6:09:42 下午 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: reduce > reduce
    三月 13, 2016 6:09:42 下午 org.apache.hadoop.mapred.Task sendDone
    信息: Task 'attempt_local_0001_r_000000_0' done.
    三月 13, 2016 6:09:42 下午 org.apache.hadoop.mapred.FileOutputCommitter cleanupJob
    警告: Output path is null in cleanup
    三月 13, 2016 6:09:43 下午 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
    信息:  map 100% reduce 100%
    三月 13, 2016 6:09:43 下午 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
    信息: Job complete: job_local_0001
    三月 13, 2016 6:09:43 下午 org.apache.hadoop.mapred.Counters log
    信息: Counters: 19
    三月 13, 2016 6:09:43 下午 org.apache.hadoop.mapred.Counters log
    信息:   File Input Format Counters 
    三月 13, 2016 6:09:43 下午 org.apache.hadoop.mapred.Counters log
    信息:     Bytes Read=65
    三月 13, 2016 6:09:43 下午 org.apache.hadoop.mapred.Counters log
    信息:   File Output Format Counters 
    三月 13, 2016 6:09:43 下午 org.apache.hadoop.mapred.Counters log
    信息:     Bytes Written=0
    三月 13, 2016 6:09:43 下午 org.apache.hadoop.mapred.Counters log
    信息:   FileSystemCounters
    三月 13, 2016 6:09:43 下午 org.apache.hadoop.mapred.Counters log
    信息:     FILE_BYTES_READ=2389740
    三月 13, 2016 6:09:43 下午 org.apache.hadoop.mapred.Counters log
    信息:     HDFS_BYTES_READ=2369826
    三月 13, 2016 6:09:43 下午 org.apache.hadoop.mapred.Counters log
    信息:     FILE_BYTES_WRITTEN=4905883
    三月 13, 2016 6:09:43 下午 org.apache.hadoop.mapred.Counters log
    信息:   Map-Reduce Framework
    三月 13, 2016 6:09:43 下午 org.apache.hadoop.mapred.Counters log
    信息:     Reduce input groups=7
    三月 13, 2016 6:09:43 下午 org.apache.hadoop.mapred.Counters log
    信息:     Map output materialized bytes=124
    三月 13, 2016 6:09:43 下午 org.apache.hadoop.mapred.Counters log
    信息:     Combine output records=9
    三月 13, 2016 6:09:43 下午 org.apache.hadoop.mapred.Counters log
    信息:     Map input records=5
    三月 13, 2016 6:09:43 下午 org.apache.hadoop.mapred.Counters log
    信息:     Reduce shuffle bytes=0
    三月 13, 2016 6:09:43 下午 org.apache.hadoop.mapred.Counters log
    信息:     Reduce output records=7
    三月 13, 2016 6:09:43 下午 org.apache.hadoop.mapred.Counters log
    信息:     Spilled Records=18
    三月 13, 2016 6:09:43 下午 org.apache.hadoop.mapred.Counters log
    信息:     Map output bytes=104
    三月 13, 2016 6:09:43 下午 org.apache.hadoop.mapred.Counters log
    信息:     Total committed heap usage (bytes)=482291712
    三月 13, 2016 6:09:43 下午 org.apache.hadoop.mapred.Counters log
    信息:     Map input bytes=65
    三月 13, 2016 6:09:43 下午 org.apache.hadoop.mapred.Counters log
    信息:     Combine input records=10
    三月 13, 2016 6:09:43 下午 org.apache.hadoop.mapred.Counters log
    信息:     Map output records=10
    三月 13, 2016 6:09:43 下午 org.apache.hadoop.mapred.Counters log
    信息:     SPLIT_RAW_BYTES=198
    三月 13, 2016 6:09:43 下午 org.apache.hadoop.mapred.Counters log
    信息:     Reduce input records=9

    数据库中的结果如下:

    以下代码都是本人亲自测试和运行过的,hadoop的版本和服务器环境信息请参看上一篇博文。

  • 相关阅读:
    图片和xml文件的转换
    WPF的样式(Style)继承
    .NET的序列化和反序列化
    WPF中的画板InkCanvas
    找到网页的源文件并找到歌曲文件的路径
    How to check if a ctrl + enter is pressed on a control?
    计算两个日期相差的天数
    图片保存到数据库以及从数据库中Load图片
    设计模式Command(命令模式)
    一个强大而且好用的UML设计工具
  • 原文地址:https://www.cnblogs.com/ljhoracle/p/5272643.html
Copyright © 2020-2023  润新知