• 『HGOI 20190917』Lefkaritika 题解 (DP)


    题目概述

    一个$n imes m$的整点集。其中$q$个点被m被设置为不能访问。

    问这个点集中含有多少个不同的正方形,满足不包含任何一个不能访问的点。

    对于$50\%$的数据满足$1 leq n,m leq 10^4, 1 leq q leq 10^3$

    对于另外$50\%$的数据满足$1 leq n,m leq 2 imes 10^5, 1 leq q leq 200$

    Solution 

      我们规定行递增的方向为$x$的正方向,列递增的方向为$y$的正方向。

      设$f[i][j]$表示以$(i,j)$为左上角的正方形最大边长。

        则$sumlimits_{i=1}^{n} sumlimits_{j=1}^{m} f[i][j]$就是所求。

      我们可以枚举对角线,然后再枚举每个标记点,分别计算各个标记点对这条对角线的影响。

      不妨设当前直线是$y = x + b$。

    • 若点$(i,j)$在直线下方(即顺时针方向),其会限制到点$(j-b,j)$左上方的所有点。
    • 若点$(i,j)$在直线上,其会限制到这个点左上方的所有点。
    • 若点$(i,j)$在直线上方(即逆时针方向),其会限制到点$(i,i+b)$左上方的所有点

      注意到,对于每一条对角线,由于标记点个数是$q$个,那么限制的记录点最多也是$q$个。

      两个记录点间的转移可以使用一些数学计算来加速做到$O(1)$,但是需要注意非常多的细节。

      人傻常数大,后面用一个set,复杂度到了$O(nq log_2  q)$

    # pragma GCC optimize(3)
    # include<bits/stdc++.h>
    # define int long long
    using namespace std;
    const int N=2e5+10;
    int n,m,q;
    namespace fast_IO{
        const int IN_LEN = 10000000, OUT_LEN = 10000000;
        char ibuf[IN_LEN], obuf[OUT_LEN], *ih = ibuf + IN_LEN, *oh = obuf, *lastin = ibuf + IN_LEN, *lastout = obuf + OUT_LEN - 1;
        inline char getchar_(){return (ih == lastin) && (lastin = (ih = ibuf) + fread(ibuf, 1, IN_LEN, stdin), ih == lastin) ? EOF : *ih++;}
        inline void putchar_(const char x){if(oh == lastout) fwrite(obuf, 1, oh - obuf, stdout), oh = obuf; *oh ++= x;}
        inline void flush(){fwrite(obuf, 1, oh - obuf, stdout);}
        int read(){
            int x = 0; int zf = 1; char ch = ' ';
            while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar_();
            if (ch == '-') zf = -1, ch = getchar_();
            while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar_(); return x * zf;
        }
        void write(int x){
            if (x < 0) putchar_('-'), x = -x;
            if (x > 9) write(x / 10);
            putchar_(x % 10 + '0');
        }
    }
    set< pair<int,int> >st;
    struct point { int x,y;}r[N];
    int cross(point a,point b) {
        return a.x*b.y-a.y*b.x;
    }
    int direct (point a,point b,point c) {
        point ba={a.x-b.x,a.y-b.y};
        point bc={c.x-b.x,c.y-b.y};
        int ret=cross(bc,ba);
        if (ret==0) return 0;
        else if (ret<0) return -1;
        else if (ret>0) return 1;
    }
    pair<int,int>bag[N],p[N];
    int work(int b) {
        int cnt=0;
        int Lx=max(-b,0ll),Rx=min(n,m-b);
        int Ly=Lx+b,Ry=Rx+b;
        for (int i=1;i<=q;i++) {
            int rec=direct(r[i],(point){-b,0},(point){0,b}); if (b<0) rec=-rec;
            if (b==0) rec=direct(r[i],(point){-1,-1},(point){0,0});
            if (rec==-1) {
                if (r[i].y-b>=Lx&&r[i].y-b<=Rx&&r[i].y>=Ly&&r[i].y<=Ry) bag[++cnt]=make_pair(r[i].y-b,r[i].x-r[i].y+b-1);
            } else if (rec==0) {
                if (r[i].x>=Lx&&r[i].x<=Rx&&r[i].y>=Ly&&r[i].y<=Ry) bag[++cnt]=make_pair(r[i].x,0);
            } else if (rec==1) {
                if (r[i].x>=Lx&&r[i].x<=Rx&&r[i].x+b>=Ly&&r[i].x+b<=Ry) bag[++cnt]=make_pair(r[i].x,r[i].y-r[i].x-b-1);
            }
        }
        sort(bag+1,bag+1+cnt);
        int tot=0;
        for (int i=1,j;i<=cnt;i=j) {
            j=i; int ret=bag[i].second;
            while (bag[j].first==bag[i].first&&j<=cnt) j++;
            p[++tot]=make_pair(bag[i].first,ret);
        }
        if (tot==0) {
            int tmp=min(n-Lx,m-Ly);
            return (tmp+1)*(tmp)/2;
        }
        int ans=(min(n-(p[tot].first+1),m-(p[tot].first+1+b)))*(min(n-(p[tot].first+1),m-(p[tot].first+1+b))+1)/2;
        p[tot].second=min(p[tot].second,min(n-p[tot].first,m-p[tot].first-b));
        int last=-1;
        for (int i=tot;i>=1;i--) {
            if (last==-1) { ans+=p[i].second; last=i; continue;}
            int num=p[last].first-p[i].first-1;
            int val=p[last].second+1;
            if (st.find(make_pair(p[last].first,p[last].first+b))!=st.end()) val--;
            ans+=num*(val+val+num-1)/2;
            if (st.find(make_pair(p[last].first,p[last].first+b))!=st.end()) p[i].second=min(p[i].second,p[last].second+num);
            else p[i].second=min(p[i].second,p[last].second+num+1);
            ans+=p[i].second; 
            last=i;
        }
        int num=p[1].first-Lx;
        int val=p[1].second+1;
        if (st.find(make_pair(p[1].first,p[1].first+b))!=st.end()) val--;
        ans+=num*(val+val+num-1)/2;
        return ans;
    }
    using namespace fast_IO;
    signed main() {
        n=read(),m=read(),q=read(); n--; m--;
        for (int i=1;i<=q;i++) {
            r[i].x=read();r[i].y=read();
            r[i].x--; r[i].y--;
            st.insert(make_pair(r[i].x,r[i].y));
        }
        int ans=0;
        for (int i=-n;i<=m;i++) ans+=work(i);
        write(ans); flush();
        return 0;
    }
    Lefkaritika.cpp
  • 相关阅读:
    ubuntu下如何更改mysql数据存放路径
    collection_select
    发现星期六日的电视比较好看
    rails
    系统抢救10.04
    劫后重生,痛定思痛,ubuntu 10.04=>10.10
    随机查询N条记录
    which linux your like
    kindeditor的使用
    array
  • 原文地址:https://www.cnblogs.com/ljc20020730/p/11561569.html
Copyright © 2020-2023  润新知