• HGOI 20190828 题解


    Problem A 数学题

    设数论函数$f(x)$表示$x(x ∉ Prime)$的次大因数,

    给出$l,r$求出$sumlimits_{i=l,i ∉ Prime} ^r f(i)$ 。

    对于$100\%$的数据,$1 leq lleq rleq  5 imes 10^9$

    Solution : 我们思考对于$r-l leq 10^7$怎么处理,

    显然,$f(x) = frac{x}{d_{min}(x)}$

    所以,我们可以用$sqrt{5 imes 10^9}$的数字去筛区间内的数,找出这些数的$d_{min} (x)$

    这样,我们可以在$O(r-l)$的复杂度内解决题目。

    但是,对于$100\%$的数据还不足以通过,所以,我们考虑在本地打表,以$10^7$的间隔打表。

    于是,分块打表产生的AC程序就诞生了。

    #include <bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    const int N = 100005;
    ll a[505] = {0,16504974832918ll,49514807041302ll,82524641299076ll,115534479934505ll,148544254405234ll,181554158308885ll,214563872594611ll,247573764207188ll,280583538103016ll,313593361626057ll,346602992946568ll,379613110929775ll,412622718262607ll,445632601916252ll,478642437755379ll,511652194457614ll,544661947496041ll,577671637940336ll,610681752050814ll,643691404588574ll,676701244176651ll,709711054775594ll,742720800286221ll,775730381310093ll,808740585896190ll,841750243027296ll,874760117073666ll,907769696410853ll,940779525226536ll,973789738206002ll,1006799160955474ll,1039808877324861ll,1072819018026025ll,1105828761150350ll,1138838541727837ll,1171848079131282ll,1204858104382139ll,1237867536035320ll,1270877842610423ll,1303887672241912ll,1336897155489979ll,1369907175171416ll,1402916647740933ll,1435927028696641ll,1468936230981939ll,1501946419251818ll,1534955574922012ll,1567966183816364ll,1600975595444924ll,1633985443056901ll,1666995678674159ll,1700005364180681ll,1733014763642307ll,1766024840505475ll,1799034631307151ll,1832044002952252ll,1865054030679522ll,1898064068452051ll,1931073520776903ll,1964083598976891ll,1997093098588907ll,2030103003059564ll,2063112702217827ll,2096122737310551ll,2129133054850411ll,2162142198328595ll,2195152115983905ll,2228161264785474ll,2261172544708734ll,2294181378777450ll,2327191233379424ll,2360201373720367ll,2393211269318476ll,2426220486575075ll,2459230819150224ll,2492240046752302ll,2525251064525340ll,2558259845985451ll,2591268636654841ll,2624280077930602ll,2657288734859772ll,2690299477550963ll,2723308150991146ll,2756319304183776ll,2789328790852636ll,2822338626083272ll,2855347891381860ll,2888357969641819ll,2921367932058355ll,2954377671380517ll,2987387687179118ll,3020395919679682ll,3053407972625776ll,3086417613231907ll,3119426240525339ll,3152436403285179ll,3185446530826116ll,3218455004607940ll,3251466542904717ll,3284474102416981ll,3317485456042933ll,3350494835559564ll,3383505323561767ll,3416514694107384ll,3449524616389762ll,3482535136132263ll,3515544067001265ll,3548552960601121ll,3581563404252177ll,3614573730318868ll,3647583278380671ll,3680593224979870ll,3713603049026829ll,3746614512962914ll,3779623637711295ll,3812631445796912ll,3845642667207059ll,3878650989452908ll,3911661656239387ll,3944671816767424ll,3977681760271560ll,4010691144633474ll,4043702388095629ll,4076710028369395ll,4109720346259831ll,4142730350170032ll,4175739772832184ll,4208750686895433ll,4241759731456393ll,4274769641755841ll,4307777872223390ll,4340789892971559ll,4373799166736030ll,4406809512953890ll,4439817532702298ll,4472829307111790ll,4505836643327275ll,4538848618830486ll,4571857797045020ll,4604867900156142ll,4637878508493697ll,4670886796634050ll,4703896752766576ll,4736906975045792ll,4769917026147829ll,4802926090607880ll,4835937748578967ll,4868944057292098ll,4901955388347787ll,4934964803726201ll,4967976054354879ll,5000985142582223ll,5033994769269421ll,5067004519698299ll,5100015475381224ll,5133023523525477ll,5166035548680638ll,5199044102202040ll,5232053769509974ll,5265063976719498ll,5298071256992732ll,5331086032306110ll,5364093009886904ll,5397101286590264ll,5430112363775912ll,5463125358224685ll,5496130321891579ll,5529143222333432ll,5562151266937027ll,5595161916107909ll,5628170955930451ll,5661180935315217ll,5694191463640877ll,5727200867537917ll,5760210082013019ll,5793220944569250ll,5826231266751643ll,5859240047889761ll,5892248661408006ll,5925259731715720ll,5958268524424498ll,5991280302232593ll,6024290558811088ll,6057297413541092ll,6090308767576979ll,6123319740301532ll,6156326709064649ll,6189337531550686ll,6222350666231978ll,6255356723766425ll,6288367605824763ll,6321377226929040ll,6354387848727584ll,6387396476006881ll,6420406295019013ll,6453418361894346ll,6486425279806916ll,6519434933117769ll,6552447537063411ll,6585455288301656ll,6618465571313108ll,6651473219530721ll,6684487597609615ll,6717493272112836ll,6750503897921972ll,6783514370819588ll,6816524779187087ll,6849533841224964ll,6882543200522966ll,6915555567048002ll,6948563176458473ll,6981569435885717ll,7014587121946570ll,7047593188567860ll,7080603174566593ll,7113612266982300ll,7146622391827726ll,7179631332633195ll,7212642629393380ll,7245652465198424ll,7278661503882743ll,7311671230143188ll,7344681060552161ll,7377691956846305ll,7410698365443030ll,7443713861235034ll,7476716796858509ll,7509729721125427ll,7542738638892030ll,7575747728275743ll,7608761023356292ll,7641769632981677ll,7674779747704999ll,7707788455568150ll,7740801037220385ll,7773805775344854ll,7806820992857333ll,7839827911666137ll,7872836137053706ll,7905848048044634ll,7938859068637500ll,7971867868233332ll,8004875132181171ll,8037889423443128ll,8070896110232830ll,8103906084599451ll,8136918977662318ll,8169925767524876ll,8202934185046077ll,8235946072038061ll,8268954361637275ll,8301967510589725ll,8334974643904362ll,8367982557462832ll,8400994813545019ll,8434004890087843ll,8467013576718783ll,8500020663978651ll,8533037879707351ll,8566043768970011ll,8599053931450993ll,8632062998388608ll,8665072097208580ll,8698085691961056ll,8731093766071517ll,8764101245824907ll,8797112666888496ll,8830121449268148ll,8863131724440902ll,8896143109833470ll,8929152677519312ll,8962160797626791ll,8995170318618191ll,9028182599892397ll,9061189984462759ll,9094202374215214ll,9127209986538911ll,9160218609463869ll,9193230004788814ll,9226239318764918ll,9259249078019552ll,9292258777511949ll,9325269472475613ll,9358278358670667ll,9391290089218066ll,9424298477932490ll,9457306969271855ll,9490319056893750ll,9523328200440578ll,9556338086313235ll,9589345316007227ll,9622357620373676ll,9655368897041442ll,9688375426730456ll,9721388824503967ll,9754397928198984ll,9787402454672295ll,9820418873814550ll,9853427280754508ll,9886434987872625ll,9919445137206151ll,9952458047898686ll,9985464773711174ll,10018477222500475ll,10051480721951374ll,10084498424737300ll,10117503035880454ll,10150511283380008ll,10183525514995947ll,10216533219700575ll,10249545115462676ll,10282555420096173ll,10315560982306657ll,10348573391185967ll,10381583589631280ll,10414590731461579ll,10447602956176541ll,10480610763020224ll,10513619676792520ll,10546634205927295ll,10579639799250750ll,10612656106927603ll,10645658290948488ll,10678673831958315ll,10711680860306978ll,10744688101131573ll,10777702974875348ll,10810713172243588ll,10843718017801528ll,10876727997999731ll,10909742976356068ll,10942745552837649ll,10975759761937138ll,11008768835479689ll,11041780044438665ll,11074792557248863ll,11107797713588017ll,11140805571789883ll,11173816471269923ll,11206833772230056ll,11239831597194058ll,11272848520003779ll,11305859986584876ll,11338861243119995ll,11371876909802235ll,11404891745082435ll,11437892311766835ll,11470908161801780ll,11503914618689504ll,11536926888562700ll,11569930981965041ll,11602948747128948ll,11635953845463421ll,11668964037083148ll,11701974936299703ll,11734983722393772ll,11767999922030689ll,11801002552735713ll,11834012757000273ll,11867024891777099ll,11900034039336811ll,11933044843810804ll,11966053496685306ll,11999059688845505ll,12032073112983797ll,12065079677645057ll,12098093861265145ll,12131099246321317ll,12164116113639448ll,12197123648653031ll,12230130206829220ll,12263140303351556ll,12296149675284303ll,12329166546109808ll,12362163995178362ll,12395183521502911ll,12428191025607568ll,12461197969424400ll,12494210960510352ll,12527223649818333ll,12560226746125306ll,12593237474958756ll,12626250442185141ll,12659255486596395ll,12692269045326660ll,12725280923267732ll,12758287872178920ll,12791300643783440ll,12824306072686417ll,12857318478711430ll,12890328450655256ll,12923342576879840ll,12956346521609668ll,12989354995382276ll,13022368136035560ll,13055375395557624ll,13088387187085464ll,13121392049733620ll,13154414533694357ll,13187414264095104ll,13220422590606727ll,13253434148574342ll,13286449933283688ll,13319453431008458ll,13352467789104963ll,13385472713638835ll,13418484508815598ll,13451496706837476ll,13484505638592382ll,13517515572237834ll,13550521844051264ll,13583534160503278ll,13616544283380142ll,13649549091999822ll,13682567242501910ll,13715571164122745ll,13748585740439504ll,13781593375245859ll,13814596002035274ll,13847616023505842ll,13880624709504762ll,13913623628459146ll,13946645941528622ll,13979654150914934ll,14012656937653649ll,14045669725564142ll,14078684346649165ll,14111685964032611ll,14144700787704032ll,14177709247364616ll,14210718916247011ll,14243734152923032ll,14276736945810726ll,14309744840548250ll,14342760538177797ll,14375768115529314ll,14408777643625614ll,14441784467373423ll,14474800518213737ll,14507806709670214ll,14540822608872175ll,14573824919746354ll,14606839372926299ll,14639849842420486ll,14672858257836917ll,14705862325475290ll,14738881008363594ll,14771885160171399ll,14804896733975004ll,14837906464878693ll,14870916255587693ll,14903917659481655ll,14936947636033735ll,14969940694692679ll,15002951189604675ll,15035967606869556ll,15068968755050047ll,15101989631801975ll,15134994655079856ll,15168005036122695ll,15201009986586199ll,15234028811592968ll,15267031260187832ll,15300045501993724ll,15333049338537562ll,15366062641352998ll,15399073651356570ll,15432082313085917ll,15465089073859934ll,15498098318094652ll,15531118673527436ll,15564119081959673ll,15597131003731861ll,15630136078225767ll,15663155107037699ll,15696160746682461ll,15729168956086495ll,15762183829610629ll,15795182488686761ll,15828210435180516ll,15861208151451320ll,15894213750900732ll,15927236153583087ll,15960235870043580ll,15993247157265286ll,16026259644857776ll,16059270353562328ll,16092274734756367ll,16125292189907530ll,16158300602354326ll,16191300181887807ll,16224324519050731ll,16257330916482853ll,16290331056290523ll,16323345837649990ll,16356351621749496ll,16389374934257625ll,16422373187347681ll,16455390970353283ll,16488403156976175ll};
    ll l, r;
    ll _div[10000005];
    bool nt_prime[N];
    int prime_cnt;
    int prime[N];
    void get_prime(int n) {
        for (int i = 2; i <= n; i++) {
        if (!nt_prime[i]) prime[++ prime_cnt] = i;
        for (int j = 1; j <= prime_cnt && prime[j] * i <= n; j++) {
            nt_prime[i * prime[j]] = 1; 
            if (i % prime[j] == 0) break;
        }
      }
    }
    ll calc(ll l, ll r) {
        memset(_div, 0, sizeof _div);
        ll res = 0;
        for (ll i = 1; i <= prime_cnt; i++) {
        for (ll j = (l - 1) / prime[i] * prime[i] + prime[i]; j <= r; j += prime[i]) {
            if (!_div[j - l]) _div[j - l] = prime[i]; 
        }
      }
        for (ll i = l; i <= r; i++) {
        if (_div[i - l] && _div[i - l] != i) res += i / _div[i - l]; 
      }
        return res;
    }
    ll solve(ll x) {
        ll res = 0; 
        ll w = x / 10000000;
        for (int i = 1; i <= w; i++) res += a[i];
        res += calc(w * 10000000 + 1, x); 
        return res;
    }
    int main() {
        get_prime(1e5); 
        scanf("%lld%lld", &l, &r);
        printf("%lld
    ", solve(r) - solve(l - 1));
        return 0; 
    }
    A.cpp

    Problem B 假题

    给出一棵含有$n$个节点的树,每条边有边权。最大化树中点集,使得点集中的点两两距离大于等于给定的$L$

    对于$100\%$的数据满足$1 leq nleq 5 imes 10^5,1 leq L,wleq 10^9$

    数据保证随机生成

    Solution: 直接从$1$跑树的深度,贪心,深度大的优先,用一次dfs除去当前新加入点集的点附近$L$的点。

          对于随机数据,复杂度应该是$O(能过)$

    #pragma GCC optimize(3)
    #include <bits/stdc++.h>
    #define int long long
    using namespace std;
    const int N=5e5+10;
    struct rec{
        int pre,to,w;
    }a[N<<1];
    int d[N],n,l,head[N],tot,p[N];
    bool vis[N];
    bool cmp(int a,int b){return d[a]>d[b];}
    inline int read()
    {
        int X=0,w=0; char c=0;
        while(c<'0'||c>'9') {w|=c=='-';c=getchar();}
        while(c>='0'&&c<='9') X=(X<<3)+(X<<1)+(c^48),c=getchar();
        return w?-X:X;
    }
    void adde(int u,int v,int w)
    {
        a[++tot].pre=head[u];
        a[tot].to=v;
        a[tot].w=w;
        head[u]=tot;
    }
    void dfs1(int u,int fa)
    {
        for (int i=head[u];i;i=a[i].pre) {
            int v=a[i].to; if (v==fa) continue;
            d[v]=d[u]+a[i].w; dfs1(v,u);
        }
    }
    void dfs2(int u,int fa,int L)
    {
        if (L<=0) return;
        vis[u]=1; 
        for (int i=head[u];i;i=a[i].pre) {
            int v=a[i].to; if (v==fa) continue;
            dfs2(v,u,L-a[i].w);
        }
    }
    signed main()
    {
        n=read();l=read();
        for (int i=1;i<=n-1;i++) {
            int u=read(),v=read(),w=read();//scanf("%d%d%d",&u,&v,&w);
            adde(u,v,w); adde(v,u,w);
        }
        dfs1(1,0);
        for (int i=1;i<=n;i++) p[i]=i;
        sort(p+1,p+1+n,cmp);
        int ans = 0;
        for (int i=1;i<=n;i++) if (!vis[p[i]]) dfs2(p[i],0,l),ans++;
        printf("%lld
    ",ans);
        return 0;
    }
    B.cpp

    Problem C 计数题

    给出一个序列$a_i(1 leq i leq n)$,求出符合下列限制的序列$b_i (1 leq i leq 2n)$的个数:

    1. 对于任意$1 leq i leq n$,都有$b_i | b_{i+n}$且$b_{i+n} | a_i$

    2. $prodlimits_{i=n+1}^{2n} b_i leq prodlimits_{i=1}^{n} {b_i}^2$

    在模$998244353$的意义下输出结果。

    对于$100\%$的数据满足,$1 leq nleq 100,1 leq a_i leq 10^9$

      Solution : 

      显然,划分阶段的时候,$i$和$i+n$是一个整体,不可分割。

      如果$a_i$足够小,我们可以直接记$f[i][j]$表示当前放到第$i$个和第$i+n$个b序列后半部分乘积除去b序列前半部分的乘积的商为$j$的方案数。

      于是这样暴力的状态和dp,是一个$O(n prod a_i sqrt{a_i})$的美妙算法,空间复杂度到了阶乘级别。

      显然,这样状态数就爆炸了,我们不可能将累乘所获得的值记到状态中去,然后我们会思考怎么不将累乘记到附加状态去。

      很快,我们会发现根本没办法做,这个状态不得不记。

      敏锐的观察到有一个$a_i = 2^k$的部分分,因子只有一个!附加状态显然可以用对数优化到$log_2 a_i$级别。

      由于因数的对称性,即以$sqrt{a_i}$为对称轴,大于$sqrt{a_i}$和小于$sqrt{a_i}$的因数个数都是一样的。

      由于选择的数,都是独立的,互不干扰,那么满足$prodlimits_{i=n+1}^{2n} b_i leq prodlimits_{i=1}^{n} {b_i}^2$和满足$prodlimits_{i=n+1}^{2n} b_i geq prodlimits_{i=1}^{n} {b_i}^2$的序列个数都是一样的。

      对于不考虑第二个限制的方案数,比较容易求,就是$prod frac{(c+1)(c+2)}{2}$ ,其中$c$表示某个数,某一个因数出现的次数。

      于是,我们需要考虑恰好,$prodlimits_{i=n+1}^{2n} b_i = prodlimits_{i=1}^{n} {b_i}^2$的方案数。

      对于每一个独立的因数,我们都可以按照$2$那样处理(对数记做状态),如果当前数不是其倍数,那么就直接跳过,继续下面的转移。

      最后将每个独立的质因子的答案相乘就是最后的答案。

      设$ans1$表示不考虑第二种方案限制的序列个数,$ans2$表示满足$prodlimits_{i=n+1}^{2n} b_i = prodlimits_{i=1}^{n} {b_i}^2$的序列个数。

      最终的答案就是$frac{ans1+ans2}{2}$

      具体的动态规划方程还是比较经典的也没有什么需要特别注意的地方。

      复杂度应该是$O(Prime\_Num imes n imes sum_{i=1}^{n} log a_i imes {log_2}^2 Max{a_i}))$

    # include <bits/stdc++.h>
    # define int long long
    using namespace std;
    const int N=105,mo=998244353;
    int f[N][6001],n,a[N],rec[N],t[N];
    bool is_pr[31623];
    int pr[31623];
    vector<int>v;
    int Pow(int x,int n) {
        int ans = 1;
        while (n) {
            if (n&1) ans=ans*x%mo;
            x=x*x%mo;
            n>>=1;
        }
        return ans%mo;
    }
    void EouLaShai(int Lim)
    {
        memset(is_pr,true,sizeof(is_pr));
        is_pr[1]=false;
        for (int i=2;i<=Lim;i++) {
            if (is_pr[i]) pr[++pr[0]]=i;
            for (int j=1;j<=pr[0]&&i*pr[j]<=Lim;j++) {
                is_pr[i*pr[j]]=false;
                if (i%pr[j]==0) break;
            }
        }
    }
    signed main() {
        int inv2=Pow(2,mo-2); EouLaShai(31622);
        int ret1=1;
        scanf("%lld",&n);
        for (int i=1;i<=n;i++) scanf("%lld",&a[i]);
        memcpy(rec,a,sizeof(a));
        for (int i=1;i<=n;i++) {
                for (int j=1;j<=pr[0];j++) {
                if (pr[j]>rec[i]) break;
                if (rec[i]%pr[j]==0) {
                    v.push_back(pr[j]); int c=0;
                    while (rec[i]>1 && rec[i]%pr[j]==0) rec[i]/=pr[j],c++;
                    ret1=ret1*((c+1)*(c+2)/2)%mo;
                }
            }   
            if (rec[i]!=1) ret1=ret1*((1+1)*(1+2)/2)%mo,v.push_back(rec[i]);
        } 
        sort(v.begin(),v.end());
        v.erase(unique(v.begin(),v.end()),v.end());
        int ret2=1;
        for (int tmp=0;tmp<v.size();tmp++) {
            int num = v[tmp],sum=0; 
            for (int i=1;i<=n;i++) {
                t[i]=0; int mht=a[i];
                while (mht>1&&mht%num==0) mht/=num,t[i]++;
                sum+=t[i];
            }
            for (int i=0;i<=n;i++)
             for (int j=-sum;j<=sum;j++)
              f[i][j+3000]=0;
            f[0][0+3000]=1;
            for (int i=0;i<=n-1;i++)
             for (int j=-sum;j<=sum;j++) if (f[i][j+3000]) {
                if (a[i+1]%num!=0) { f[i+1][j+3000]=f[i][j+3000]; continue;}
                int lim = t[i+1];
                for (int k=0;k<=lim;k++)
                 for (int w=0;w<=k;w++) if (j+k-2*w>=-sum &&j+k-2*w<=sum) {
                    f[i+1][j+k-2*w+3000]=(f[i+1][j+k-2*w+3000]+f[i][j+3000])%mo;
                  }
             }
             ret2=ret2*f[n][0+3000]%mo;
        }
        int ans = (ret1+ret2)*inv2%mo;
        printf("%lld
    ",ans); 
        return 0;
    }
    C.cpp
  • 相关阅读:
    ES6常用新特性
    jquery基础总结 -- 转载
    正则验证
    prop attr 到底哪里不一样?
    分页导航 获取当前页码 的 分页导航哦
    使用Bootatrap的心得
    使用padding来合理布局自己的容器类
    使用angular-ui-router替代ng-router
    使用jitpack来获取github上的开源项目
    关于移动端的UI事件分类
  • 原文地址:https://www.cnblogs.com/ljc20020730/p/11427185.html
Copyright © 2020-2023  润新知