• 第六章-总体与样本


    总体: 研究事物的总体

    个体: 全体事物中的单个,叫做个体

    有限总体: 总体时有限个.

    无限总体: 熊踢无限个.

    样本: 从总体中抽样(X1,...Xn),观测值(x1,...xn)

    统计量的定义: 不含任何未知参数的样本的函数(以下X'都表示均值)

    • x1 + x2 + ...+xn
    • 均值: X' = 1/nΣi=1nXi
    • 未修正的样本方差: S02 = 1/nΣi=1n(Xi-X')
    • 样本的方差: S2 = 1/(n-1)Σi=1n(Xi-X')2
    • 样本的标准差: S = (1/(n-1)Σi=1n(Xi-X'))½
    • 样本K阶原点距: Ak = 1/nΣi=1nXik   A1 = X'
    • 样本K阶中心距: Bk = 1/nΣi=1n(Xi-X')k  B2 = S02

    两个样本的协方差: 

    • S12 = 1/nΣ(Xi-X')(Yi-Y')
    • 相关系数: R = S12/S1S2

    样本均值和样本方差的性质:

    • 设总体X的均值未EX = μ, 方差为DX = σ2, 样本(X1,X2,...,Xn)来自总体X, 则:
      • EX' = μ
      • DX' = 1/nσ2
      • E(S)2 = σ2

    抽样分布(统计量分布):

    • 卡方分布: 
      • 定理: X1,...Xn相互独立, 服从标准正太分布N(0,1)  Σi=1nxi2 ~ X2(n), 自由度是由前边变量的个数决定的
      • EX = n,   DX = 2n
      • 定理: X~ X2(n),  Y ~ X2(n),, X,Y均服从卡方分布, 且X,Y相互独立,则X+Y ~ X2(m+n)
      • 推论: Xi ~ X2(mi), Xi之间相互独立, Σi=1nXi ~ X2i=1nmi)
    • 上α分位数: 
      • P (X2 > X2α(n)) = α
        • α就是点, X2α :这的α是概率

    t分布: 

    • 定理: X ~ N(0,1)服从正太分布, Y ~ X2(n)服从卡方分布, X,Y独立, 则X/(Y/n)½ ~ t(n)

    F分布:

    • 定理: X ~ X2(n1), Y ~ X2(n2), X,Y均服从卡方分布, 且相互独立, 则(X/n1)⁄(Y/n2) = F(n1, n2)
    • F(n1, n2) = 1/(F(n2, n1))

    正太总体下的抽样分布

    • 定理: X ~ N(μ,σ2)的正态分布, {X1, ...Xn}样本
      • X' ~ N(μ, σ2/n)
      • (X' - μ)/(σ/n½ )= (X' - μ)/σn½ ~ N(0,1)
      • EX = μ
      • DX = σ2/n
      • (n-1)s22 = 1/σ2 = 1/σ2Σi=1n(xi - x')2 ~ X2(n-1)  (卡方分布)
      • X' 与S2相互独立
    • 1/σ2Σi=1n(Xi-μ)2 ~ X2(n)
    • (X' - μ)/Sn½ ~ t(n-1)
    • 两个正太总样本: X ~ N(μ1, σ12),  Y ~ N(μ2, σ22)
      • [(X'-Y') - (μ1 - μ2)] / (σ12/n1 + σ22/n2)½ 
      • (S1212)/(S2222) ~ F(n1-1, n2-1)
  • 相关阅读:
    python3写的exe小工具的准备事项
    信息网站罗列
    you-get下载视频
    sprintboot入门
    linux 常用指令nfs,根据时间删除文件,路由router
    ubuntu下adsl拨号设置
    Hadoop的Archive归档命令使用指南
    MVC5 + EF6 完整入门教程三:EF来了
    MVC5 + EF6 入门完整教程二:从前端的UI开始
    MVC5 + EF6 入门完整教程一:从0开始
  • 原文地址:https://www.cnblogs.com/ljc-0923/p/15129688.html
Copyright © 2020-2023  润新知