• 10分钟学习pandas


    10 Minutes to pandas

    This is a short introduction to pandas, geared mainly for new users. You can see more complex recipes in the Cookbook

    Customarily, we import as follows:

    In [1]: import pandas as pd
    
    In [2]: import numpy as np
    
    In [3]: import matplotlib.pyplot as plt
    

    Object Creation

    See the Data Structure Intro section

    Creating a Series by passing a list of values, letting pandas create a default integer index:

    In [4]: s = pd.Series([1,3,5,np.nan,6,8])
    
    In [5]: s
    Out[5]: 
    0    1.0
    1    3.0
    2    5.0
    3    NaN
    4    6.0
    5    8.0
    dtype: float64
    

    Creating a DataFrame by passing a numpy array, with a datetime index and labeled columns:

    In [6]: dates = pd.date_range('20130101', periods=6)
    
    In [7]: dates
    Out[7]: 
    DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
                   '2013-01-05', '2013-01-06'],
                  dtype='datetime64[ns]', freq='D')
    
    In [8]: df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))
    
    In [9]: df
    Out[9]: 
                       A         B         C         D
    2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
    2013-01-02  1.212112 -0.173215  0.119209 -1.044236
    2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
    2013-01-04  0.721555 -0.706771 -1.039575  0.271860
    2013-01-05 -0.424972  0.567020  0.276232 -1.087401
    2013-01-06 -0.673690  0.113648 -1.478427  0.524988
    

    Creating a DataFrame by passing a dict of objects that can be converted to series-like.

    In [10]: df2 = pd.DataFrame({ 'A' : 1.,
       ....:                      'B' : pd.Timestamp('20130102'),
       ....:                      'C' : pd.Series(1,index=list(range(4)),dtype='float32'),
       ....:                      'D' : np.array([3] * 4,dtype='int32'),
       ....:                      'E' : pd.Categorical(["test","train","test","train"]),
       ....:                      'F' : 'foo' })
       ....: 
    
    In [11]: df2
    Out[11]: 
         A          B    C  D      E    F
    0  1.0 2013-01-02  1.0  3   test  foo
    1  1.0 2013-01-02  1.0  3  train  foo
    2  1.0 2013-01-02  1.0  3   test  foo
    3  1.0 2013-01-02  1.0  3  train  foo
    

    Having specific dtypes

    In [12]: df2.dtypes
    Out[12]: 
    A           float64
    B    datetime64[ns]
    C           float32
    D             int32
    E          category
    F            object
    dtype: object
    

    If you’re using IPython, tab completion for column names (as well as public attributes) is automatically enabled. Here’s a subset of the attributes that will be completed:

    In [13]: df2.<TAB>
    df2.A                  df2.boxplot
    df2.abs                df2.C
    df2.add                df2.clip
    df2.add_prefix         df2.clip_lower
    df2.add_suffix         df2.clip_upper
    df2.align              df2.columns
    df2.all                df2.combine
    df2.any                df2.combineAdd
    df2.append             df2.combine_first
    df2.apply              df2.combineMult
    df2.applymap           df2.compound
    df2.as_blocks          df2.consolidate
    df2.asfreq             df2.convert_objects
    df2.as_matrix          df2.copy
    df2.astype             df2.corr
    df2.at                 df2.corrwith
    df2.at_time            df2.count
    df2.axes               df2.cov
    df2.B                  df2.cummax
    df2.between_time       df2.cummin
    df2.bfill              df2.cumprod
    df2.blocks             df2.cumsum
    df2.bool               df2.D
    

    As you can see, the columns A, B, C, and D are automatically tab completed. E is there as well; the rest of the attributes have been truncated for brevity.

    Viewing Data

    See the Basics section

    See the top & bottom rows of the frame

    In [14]: df.head()
    Out[14]: 
                       A         B         C         D
    2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
    2013-01-02  1.212112 -0.173215  0.119209 -1.044236
    2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
    2013-01-04  0.721555 -0.706771 -1.039575  0.271860
    2013-01-05 -0.424972  0.567020  0.276232 -1.087401
    
    In [15]: df.tail(3)
    Out[15]: 
                       A         B         C         D
    2013-01-04  0.721555 -0.706771 -1.039575  0.271860
    2013-01-05 -0.424972  0.567020  0.276232 -1.087401
    2013-01-06 -0.673690  0.113648 -1.478427  0.524988
    

    Display the index, columns, and the underlying numpy data

    In [16]: df.index
    Out[16]: 
    DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
                   '2013-01-05', '2013-01-06'],
                  dtype='datetime64[ns]', freq='D')
    
    In [17]: df.columns
    Out[17]: Index([u'A', u'B', u'C', u'D'], dtype='object')
    
    In [18]: df.values
    Out[18]: 
    array([[ 0.4691, -0.2829, -1.5091, -1.1356],
           [ 1.2121, -0.1732,  0.1192, -1.0442],
           [-0.8618, -2.1046, -0.4949,  1.0718],
           [ 0.7216, -0.7068, -1.0396,  0.2719],
           [-0.425 ,  0.567 ,  0.2762, -1.0874],
           [-0.6737,  0.1136, -1.4784,  0.525 ]])
    

    Describe shows a quick statistic summary of your data

    In [19]: df.describe()
    Out[19]: 
                  A         B         C         D
    count  6.000000  6.000000  6.000000  6.000000
    mean   0.073711 -0.431125 -0.687758 -0.233103
    std    0.843157  0.922818  0.779887  0.973118
    min   -0.861849 -2.104569 -1.509059 -1.135632
    25%   -0.611510 -0.600794 -1.368714 -1.076610
    50%    0.022070 -0.228039 -0.767252 -0.386188
    75%    0.658444  0.041933 -0.034326  0.461706
    max    1.212112  0.567020  0.276232  1.071804
    

    Transposing your data

    In [20]: df.T
    Out[20]: 
       2013-01-01  2013-01-02  2013-01-03  2013-01-04  2013-01-05  2013-01-06
    A    0.469112    1.212112   -0.861849    0.721555   -0.424972   -0.673690
    B   -0.282863   -0.173215   -2.104569   -0.706771    0.567020    0.113648
    C   -1.509059    0.119209   -0.494929   -1.039575    0.276232   -1.478427
    D   -1.135632   -1.044236    1.071804    0.271860   -1.087401    0.524988
    

    Sorting by an axis

    In [21]: df.sort_index(axis=1, ascending=False)
    Out[21]: 
                       D         C         B         A
    2013-01-01 -1.135632 -1.509059 -0.282863  0.469112
    2013-01-02 -1.044236  0.119209 -0.173215  1.212112
    2013-01-03  1.071804 -0.494929 -2.104569 -0.861849
    2013-01-04  0.271860 -1.039575 -0.706771  0.721555
    2013-01-05 -1.087401  0.276232  0.567020 -0.424972
    2013-01-06  0.524988 -1.478427  0.113648 -0.673690
    

    Sorting by values

    In [22]: df.sort_values(by='B')
    Out[22]: 
                       A         B         C         D
    2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
    2013-01-04  0.721555 -0.706771 -1.039575  0.271860
    2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
    2013-01-02  1.212112 -0.173215  0.119209 -1.044236
    2013-01-06 -0.673690  0.113648 -1.478427  0.524988
    2013-01-05 -0.424972  0.567020  0.276232 -1.087401
    

    Selection

    Note

    While standard Python / Numpy expressions for selecting and setting are intuitive and come in handy for interactive work, for production code, we recommend the optimized pandas data access methods, .at, .iat, .loc, .iloc and .ix.

    See the indexing documentation Indexing and Selecting Data and MultiIndex / Advanced Indexing

    Getting

    Selecting a single column, which yields a Series, equivalent to df.A

    In [23]: df['A']
    Out[23]: 
    2013-01-01    0.469112
    2013-01-02    1.212112
    2013-01-03   -0.861849
    2013-01-04    0.721555
    2013-01-05   -0.424972
    2013-01-06   -0.673690
    Freq: D, Name: A, dtype: float64
    

    Selecting via [], which slices the rows.

    In [24]: df[0:3]
    Out[24]: 
                       A         B         C         D
    2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
    2013-01-02  1.212112 -0.173215  0.119209 -1.044236
    2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
    
    In [25]: df['20130102':'20130104']
    Out[25]: 
                       A         B         C         D
    2013-01-02  1.212112 -0.173215  0.119209 -1.044236
    2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
    2013-01-04  0.721555 -0.706771 -1.039575  0.271860
    

    Selection by Label

    See more in Selection by Label

    For getting a cross section using a label

    In [26]: df.loc[dates[0]]
    Out[26]: 
    A    0.469112
    B   -0.282863
    C   -1.509059
    D   -1.135632
    Name: 2013-01-01 00:00:00, dtype: float64
    

    Selecting on a multi-axis by label

    In [27]: df.loc[:,['A','B']]
    Out[27]: 
                       A         B
    2013-01-01  0.469112 -0.282863
    2013-01-02  1.212112 -0.173215
    2013-01-03 -0.861849 -2.104569
    2013-01-04  0.721555 -0.706771
    2013-01-05 -0.424972  0.567020
    2013-01-06 -0.673690  0.113648
    

    Showing label slicing, both endpoints are included

    In [28]: df.loc['20130102':'20130104',['A','B']]
    Out[28]: 
                       A         B
    2013-01-02  1.212112 -0.173215
    2013-01-03 -0.861849 -2.104569
    2013-01-04  0.721555 -0.706771
    

    Reduction in the dimensions of the returned object

    In [29]: df.loc['20130102',['A','B']]
    Out[29]: 
    A    1.212112
    B   -0.173215
    Name: 2013-01-02 00:00:00, dtype: float64
    

    For getting a scalar value

    In [30]: df.loc[dates[0],'A']
    Out[30]: 0.46911229990718628
    

    For getting fast access to a scalar (equiv to the prior method)

    In [31]: df.at[dates[0],'A']
    Out[31]: 0.46911229990718628
    

    Selection by Position

    See more in Selection by Position

    Select via the position of the passed integers

    In [32]: df.iloc[3]
    Out[32]: 
    A    0.721555
    B   -0.706771
    C   -1.039575
    D    0.271860
    Name: 2013-01-04 00:00:00, dtype: float64
    

    By integer slices, acting similar to numpy/python

    In [33]: df.iloc[3:5,0:2]
    Out[33]: 
                       A         B
    2013-01-04  0.721555 -0.706771
    2013-01-05 -0.424972  0.567020
    

    By lists of integer position locations, similar to the numpy/python style

    In [34]: df.iloc[[1,2,4],[0,2]]
    Out[34]: 
                       A         C
    2013-01-02  1.212112  0.119209
    2013-01-03 -0.861849 -0.494929
    2013-01-05 -0.424972  0.276232
    

    For slicing rows explicitly

    In [35]: df.iloc[1:3,:]
    Out[35]: 
                       A         B         C         D
    2013-01-02  1.212112 -0.173215  0.119209 -1.044236
    2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
    

    For slicing columns explicitly

    In [36]: df.iloc[:,1:3]
    Out[36]: 
                       B         C
    2013-01-01 -0.282863 -1.509059
    2013-01-02 -0.173215  0.119209
    2013-01-03 -2.104569 -0.494929
    2013-01-04 -0.706771 -1.039575
    2013-01-05  0.567020  0.276232
    2013-01-06  0.113648 -1.478427
    

    For getting a value explicitly

    In [37]: df.iloc[1,1]
    Out[37]: -0.17321464905330858
    

    For getting fast access to a scalar (equiv to the prior method)

    In [38]: df.iat[1,1]
    Out[38]: -0.17321464905330858
    

    Boolean Indexing

    Using a single column’s values to select data.

    In [39]: df[df.A > 0]
    Out[39]: 
                       A         B         C         D
    2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
    2013-01-02  1.212112 -0.173215  0.119209 -1.044236
    2013-01-04  0.721555 -0.706771 -1.039575  0.271860
    

    A where operation for getting.

    In [40]: df[df > 0]
    Out[40]: 
                       A         B         C         D
    2013-01-01  0.469112       NaN       NaN       NaN
    2013-01-02  1.212112       NaN  0.119209       NaN
    2013-01-03       NaN       NaN       NaN  1.071804
    2013-01-04  0.721555       NaN       NaN  0.271860
    2013-01-05       NaN  0.567020  0.276232       NaN
    2013-01-06       NaN  0.113648       NaN  0.524988
    

    Using the isin() method for filtering:

    In [41]: df2 = df.copy()
    
    In [42]: df2['E'] = ['one', 'one','two','three','four','three']
    
    In [43]: df2
    Out[43]: 
                       A         B         C         D      E
    2013-01-01  0.469112 -0.282863 -1.509059 -1.135632    one
    2013-01-02  1.212112 -0.173215  0.119209 -1.044236    one
    2013-01-03 -0.861849 -2.104569 -0.494929  1.071804    two
    2013-01-04  0.721555 -0.706771 -1.039575  0.271860  three
    2013-01-05 -0.424972  0.567020  0.276232 -1.087401   four
    2013-01-06 -0.673690  0.113648 -1.478427  0.524988  three
    
    In [44]: df2[df2['E'].isin(['two','four'])]
    Out[44]: 
                       A         B         C         D     E
    2013-01-03 -0.861849 -2.104569 -0.494929  1.071804   two
    2013-01-05 -0.424972  0.567020  0.276232 -1.087401  four
    

    Setting

    Setting a new column automatically aligns the data by the indexes

    In [45]: s1 = pd.Series([1,2,3,4,5,6], index=pd.date_range('20130102', periods=6))
    
    In [46]: s1
    Out[46]: 
    2013-01-02    1
    2013-01-03    2
    2013-01-04    3
    2013-01-05    4
    2013-01-06    5
    2013-01-07    6
    Freq: D, dtype: int64
    
    In [47]: df['F'] = s1
    

    Setting values by label

    In [48]: df.at[dates[0],'A'] = 0
    

    Setting values by position

    In [49]: df.iat[0,1] = 0
    

    Setting by assigning with a numpy array

    In [50]: df.loc[:,'D'] = np.array([5] * len(df))
    

    The result of the prior setting operations

    In [51]: df
    Out[51]: 
                       A         B         C  D    F
    2013-01-01  0.000000  0.000000 -1.509059  5  NaN
    2013-01-02  1.212112 -0.173215  0.119209  5  1.0
    2013-01-03 -0.861849 -2.104569 -0.494929  5  2.0
    2013-01-04  0.721555 -0.706771 -1.039575  5  3.0
    2013-01-05 -0.424972  0.567020  0.276232  5  4.0
    2013-01-06 -0.673690  0.113648 -1.478427  5  5.0
    

    A where operation with setting.

    In [52]: df2 = df.copy()
    
    In [53]: df2[df2 > 0] = -df2
    
    In [54]: df2
    Out[54]: 
                       A         B         C  D    F
    2013-01-01  0.000000  0.000000 -1.509059 -5  NaN
    2013-01-02 -1.212112 -0.173215 -0.119209 -5 -1.0
    2013-01-03 -0.861849 -2.104569 -0.494929 -5 -2.0
    2013-01-04 -0.721555 -0.706771 -1.039575 -5 -3.0
    2013-01-05 -0.424972 -0.567020 -0.276232 -5 -4.0
    2013-01-06 -0.673690 -0.113648 -1.478427 -5 -5.0
    

    Missing Data

    pandas primarily uses the value np.nan to represent missing data. It is by default not included in computations. See the Missing Data section

    Reindexing allows you to change/add/delete the index on a specified axis. This returns a copy of the data.

    In [55]: df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ['E'])
    
    In [56]: df1.loc[dates[0]:dates[1],'E'] = 1
    
    In [57]: df1
    Out[57]: 
                       A         B         C  D    F    E
    2013-01-01  0.000000  0.000000 -1.509059  5  NaN  1.0
    2013-01-02  1.212112 -0.173215  0.119209  5  1.0  1.0
    2013-01-03 -0.861849 -2.104569 -0.494929  5  2.0  NaN
    2013-01-04  0.721555 -0.706771 -1.039575  5  3.0  NaN
    

    To drop any rows that have missing data.

    In [58]: df1.dropna(how='any')
    Out[58]: 
                       A         B         C  D    F    E
    2013-01-02  1.212112 -0.173215  0.119209  5  1.0  1.0
    

    Filling missing data

    In [59]: df1.fillna(value=5)
    Out[59]: 
                       A         B         C  D    F    E
    2013-01-01  0.000000  0.000000 -1.509059  5  5.0  1.0
    2013-01-02  1.212112 -0.173215  0.119209  5  1.0  1.0
    2013-01-03 -0.861849 -2.104569 -0.494929  5  2.0  5.0
    2013-01-04  0.721555 -0.706771 -1.039575  5  3.0  5.0
    

    To get the boolean mask where values are nan

    In [60]: pd.isnull(df1)
    Out[60]: 
                    A      B      C      D      F      E
    2013-01-01  False  False  False  False   True  False
    2013-01-02  False  False  False  False  False  False
    2013-01-03  False  False  False  False  False   True
    2013-01-04  False  False  False  False  False   True
    

    Operations

    See the Basic section on Binary Ops

    Stats

    Operations in general exclude missing data.

    Performing a descriptive statistic

    In [61]: df.mean()
    Out[61]: 
    A   -0.004474
    B   -0.383981
    C   -0.687758
    D    5.000000
    F    3.000000
    dtype: float64
    

    Same operation on the other axis

    In [62]: df.mean(1)
    Out[62]: 
    2013-01-01    0.872735
    2013-01-02    1.431621
    2013-01-03    0.707731
    2013-01-04    1.395042
    2013-01-05    1.883656
    2013-01-06    1.592306
    Freq: D, dtype: float64
    

    Operating with objects that have different dimensionality and need alignment. In addition, pandas automatically broadcasts along the specified dimension.

    In [63]: s = pd.Series([1,3,5,np.nan,6,8], index=dates).shift(2)
    
    In [64]: s
    Out[64]: 
    2013-01-01    NaN
    2013-01-02    NaN
    2013-01-03    1.0
    2013-01-04    3.0
    2013-01-05    5.0
    2013-01-06    NaN
    Freq: D, dtype: float64
    
    In [65]: df.sub(s, axis='index')
    Out[65]: 
                       A         B         C    D    F
    2013-01-01       NaN       NaN       NaN  NaN  NaN
    2013-01-02       NaN       NaN       NaN  NaN  NaN
    2013-01-03 -1.861849 -3.104569 -1.494929  4.0  1.0
    2013-01-04 -2.278445 -3.706771 -4.039575  2.0  0.0
    2013-01-05 -5.424972 -4.432980 -4.723768  0.0 -1.0
    2013-01-06       NaN       NaN       NaN  NaN  NaN
    

    Apply

    Applying functions to the data

    In [66]: df.apply(np.cumsum)
    Out[66]: 
                       A         B         C   D     F
    2013-01-01  0.000000  0.000000 -1.509059   5   NaN
    2013-01-02  1.212112 -0.173215 -1.389850  10   1.0
    2013-01-03  0.350263 -2.277784 -1.884779  15   3.0
    2013-01-04  1.071818 -2.984555 -2.924354  20   6.0
    2013-01-05  0.646846 -2.417535 -2.648122  25  10.0
    2013-01-06 -0.026844 -2.303886 -4.126549  30  15.0
    
    In [67]: df.apply(lambda x: x.max() - x.min())
    Out[67]: 
    A    2.073961
    B    2.671590
    C    1.785291
    D    0.000000
    F    4.000000
    dtype: float64
    

    Histogramming

    See more at Histogramming and Discretization

    In [68]: s = pd.Series(np.random.randint(0, 7, size=10))
    
    In [69]: s
    Out[69]: 
    0    4
    1    2
    2    1
    3    2
    4    6
    5    4
    6    4
    7    6
    8    4
    9    4
    dtype: int64
    
    In [70]: s.value_counts()
    Out[70]: 
    4    5
    6    2
    2    2
    1    1
    dtype: int64
    

    String Methods

    Series is equipped with a set of string processing methods in the str attribute that make it easy to operate on each element of the array, as in the code snippet below. Note that pattern-matching in str generally uses regular expressions by default (and in some cases always uses them). See more at Vectorized String Methods.

    In [71]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])
    
    In [72]: s.str.lower()
    Out[72]: 
    0       a
    1       b
    2       c
    3    aaba
    4    baca
    5     NaN
    6    caba
    7     dog
    8     cat
    dtype: object
    

    Merge

    Concat

    pandas provides various facilities for easily combining together Series, DataFrame, and Panel objects with various kinds of set logic for the indexes and relational algebra functionality in the case of join / merge-type operations.

    See the Merging section

    Concatenating pandas objects together with concat():

    In [73]: df = pd.DataFrame(np.random.randn(10, 4))
    
    In [74]: df
    Out[74]: 
              0         1         2         3
    0 -0.548702  1.467327 -1.015962 -0.483075
    1  1.637550 -1.217659 -0.291519 -1.745505
    2 -0.263952  0.991460 -0.919069  0.266046
    3 -0.709661  1.669052  1.037882 -1.705775
    4 -0.919854 -0.042379  1.247642 -0.009920
    5  0.290213  0.495767  0.362949  1.548106
    6 -1.131345 -0.089329  0.337863 -0.945867
    7 -0.932132  1.956030  0.017587 -0.016692
    8 -0.575247  0.254161 -1.143704  0.215897
    9  1.193555 -0.077118 -0.408530 -0.862495
    
    # break it into pieces
    In [75]: pieces = [df[:3], df[3:7], df[7:]]
    
    In [76]: pd.concat(pieces)
    Out[76]: 
              0         1         2         3
    0 -0.548702  1.467327 -1.015962 -0.483075
    1  1.637550 -1.217659 -0.291519 -1.745505
    2 -0.263952  0.991460 -0.919069  0.266046
    3 -0.709661  1.669052  1.037882 -1.705775
    4 -0.919854 -0.042379  1.247642 -0.009920
    5  0.290213  0.495767  0.362949  1.548106
    6 -1.131345 -0.089329  0.337863 -0.945867
    7 -0.932132  1.956030  0.017587 -0.016692
    8 -0.575247  0.254161 -1.143704  0.215897
    9  1.193555 -0.077118 -0.408530 -0.862495
    

    Join

    SQL style merges. See the Database style joining

    In [77]: left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})
    
    In [78]: right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})
    
    In [79]: left
    Out[79]: 
       key  lval
    0  foo     1
    1  foo     2
    
    In [80]: right
    Out[80]: 
       key  rval
    0  foo     4
    1  foo     5
    
    In [81]: pd.merge(left, right, on='key')
    Out[81]: 
       key  lval  rval
    0  foo     1     4
    1  foo     1     5
    2  foo     2     4
    3  foo     2     5
    

    Append

    Append rows to a dataframe. See the Appending

    In [82]: df = pd.DataFrame(np.random.randn(8, 4), columns=['A','B','C','D'])
    
    In [83]: df
    Out[83]: 
              A         B         C         D
    0  1.346061  1.511763  1.627081 -0.990582
    1 -0.441652  1.211526  0.268520  0.024580
    2 -1.577585  0.396823 -0.105381 -0.532532
    3  1.453749  1.208843 -0.080952 -0.264610
    4 -0.727965 -0.589346  0.339969 -0.693205
    5 -0.339355  0.593616  0.884345  1.591431
    6  0.141809  0.220390  0.435589  0.192451
    7 -0.096701  0.803351  1.715071 -0.708758
    
    In [84]: s = df.iloc[3]
    
    In [85]: df.append(s, ignore_index=True)
    Out[85]: 
              A         B         C         D
    0  1.346061  1.511763  1.627081 -0.990582
    1 -0.441652  1.211526  0.268520  0.024580
    2 -1.577585  0.396823 -0.105381 -0.532532
    3  1.453749  1.208843 -0.080952 -0.264610
    4 -0.727965 -0.589346  0.339969 -0.693205
    5 -0.339355  0.593616  0.884345  1.591431
    6  0.141809  0.220390  0.435589  0.192451
    7 -0.096701  0.803351  1.715071 -0.708758
    8  1.453749  1.208843 -0.080952 -0.264610
    

    Grouping

    By “group by” we are referring to a process involving one or more of the following steps

    • Splitting the data into groups based on some criteria
    • Applying a function to each group independently
    • Combining the results into a data structure

    See the Grouping section

    In [86]: df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',
       ....:                           'foo', 'bar', 'foo', 'foo'],
       ....:                    'B' : ['one', 'one', 'two', 'three',
       ....:                           'two', 'two', 'one', 'three'],
       ....:                    'C' : np.random.randn(8),
       ....:                    'D' : np.random.randn(8)})
       ....: 
    
    In [87]: df
    Out[87]: 
         A      B         C         D
    0  foo    one -1.202872 -0.055224
    1  bar    one -1.814470  2.395985
    2  foo    two  1.018601  1.552825
    3  bar  three -0.595447  0.166599
    4  foo    two  1.395433  0.047609
    5  bar    two -0.392670 -0.136473
    6  foo    one  0.007207 -0.561757
    7  foo  three  1.928123 -1.623033
    

    Grouping and then applying a function sum to the resulting groups.

    In [88]: df.groupby('A').sum()
    Out[88]: 
                C        D
    A                     
    bar -2.802588  2.42611
    foo  3.146492 -0.63958
    

    Grouping by multiple columns forms a hierarchical index, which we then apply the function.

    In [89]: df.groupby(['A','B']).sum()
    Out[89]: 
                      C         D
    A   B                        
    bar one   -1.814470  2.395985
        three -0.595447  0.166599
        two   -0.392670 -0.136473
    foo one   -1.195665 -0.616981
        three  1.928123 -1.623033
        two    2.414034  1.600434
    

    Reshaping

    See the sections on Hierarchical Indexing and Reshaping.

    Stack

    In [90]: tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',
       ....:                      'foo', 'foo', 'qux', 'qux'],
       ....:                     ['one', 'two', 'one', 'two',
       ....:                      'one', 'two', 'one', 'two']]))
       ....: 
    
    In [91]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
    
    In [92]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B'])
    
    In [93]: df2 = df[:4]
    
    In [94]: df2
    Out[94]: 
                         A         B
    first second                    
    bar   one     0.029399 -0.542108
          two     0.282696 -0.087302
    baz   one    -1.575170  1.771208
          two     0.816482  1.100230
    

    The stack() method “compresses” a level in the DataFrame’s columns.

    In [95]: stacked = df2.stack()
    
    In [96]: stacked
    Out[96]: 
    first  second   
    bar    one     A    0.029399
                   B   -0.542108
           two     A    0.282696
                   B   -0.087302
    baz    one     A   -1.575170
                   B    1.771208
           two     A    0.816482
                   B    1.100230
    dtype: float64
    

    With a “stacked” DataFrame or Series (having a MultiIndex as the index), the inverse operation of stack() is unstack(), which by default unstacks the last level:

    In [97]: stacked.unstack()
    Out[97]: 
                         A         B
    first second                    
    bar   one     0.029399 -0.542108
          two     0.282696 -0.087302
    baz   one    -1.575170  1.771208
          two     0.816482  1.100230
    
    In [98]: stacked.unstack(1)
    Out[98]: 
    second        one       two
    first                      
    bar   A  0.029399  0.282696
          B -0.542108 -0.087302
    baz   A -1.575170  0.816482
          B  1.771208  1.100230
    
    In [99]: stacked.unstack(0)
    Out[99]: 
    first          bar       baz
    second                      
    one    A  0.029399 -1.575170
           B -0.542108  1.771208
    two    A  0.282696  0.816482
           B -0.087302  1.100230
    

    Pivot Tables

    See the section on Pivot Tables.

    In [100]: df = pd.DataFrame({'A' : ['one', 'one', 'two', 'three'] * 3,
       .....:                    'B' : ['A', 'B', 'C'] * 4,
       .....:                    'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2,
       .....:                    'D' : np.random.randn(12),
       .....:                    'E' : np.random.randn(12)})
       .....: 
    
    In [101]: df
    Out[101]: 
            A  B    C         D         E
    0     one  A  foo  1.418757 -0.179666
    1     one  B  foo -1.879024  1.291836
    2     two  C  foo  0.536826 -0.009614
    3   three  A  bar  1.006160  0.392149
    4     one  B  bar -0.029716  0.264599
    5     one  C  bar -1.146178 -0.057409
    6     two  A  foo  0.100900 -1.425638
    7   three  B  foo -1.035018  1.024098
    8     one  C  foo  0.314665 -0.106062
    9     one  A  bar -0.773723  1.824375
    10    two  B  bar -1.170653  0.595974
    11  three  C  bar  0.648740  1.167115
    

    We can produce pivot tables from this data very easily:

    In [102]: pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])
    Out[102]: 
    C             bar       foo
    A     B                    
    one   A -0.773723  1.418757
          B -0.029716 -1.879024
          C -1.146178  0.314665
    three A  1.006160       NaN
          B       NaN -1.035018
          C  0.648740       NaN
    two   A       NaN  0.100900
          B -1.170653       NaN
          C       NaN  0.536826
    

    Time Series

    pandas has simple, powerful, and efficient functionality for performing resampling operations during frequency conversion (e.g., converting secondly data into 5-minutely data). This is extremely common in, but not limited to, financial applications. See the Time Series section

    In [103]: rng = pd.date_range('1/1/2012', periods=100, freq='S')
    
    In [104]: ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)
    
    In [105]: ts.resample('5Min').sum()
    Out[105]: 
    2012-01-01    25083
    Freq: 5T, dtype: int64
    

    Time zone representation

    In [106]: rng = pd.date_range('3/6/2012 00:00', periods=5, freq='D')
    
    In [107]: ts = pd.Series(np.random.randn(len(rng)), rng)
    
    In [108]: ts
    Out[108]: 
    2012-03-06    0.464000
    2012-03-07    0.227371
    2012-03-08   -0.496922
    2012-03-09    0.306389
    2012-03-10   -2.290613
    Freq: D, dtype: float64
    
    In [109]: ts_utc = ts.tz_localize('UTC')
    
    In [110]: ts_utc
    Out[110]: 
    2012-03-06 00:00:00+00:00    0.464000
    2012-03-07 00:00:00+00:00    0.227371
    2012-03-08 00:00:00+00:00   -0.496922
    2012-03-09 00:00:00+00:00    0.306389
    2012-03-10 00:00:00+00:00   -2.290613
    Freq: D, dtype: float64
    

    Convert to another time zone

    In [111]: ts_utc.tz_convert('US/Eastern')
    Out[111]: 
    2012-03-05 19:00:00-05:00    0.464000
    2012-03-06 19:00:00-05:00    0.227371
    2012-03-07 19:00:00-05:00   -0.496922
    2012-03-08 19:00:00-05:00    0.306389
    2012-03-09 19:00:00-05:00   -2.290613
    Freq: D, dtype: float64
    

    Converting between time span representations

    In [112]: rng = pd.date_range('1/1/2012', periods=5, freq='M')
    
    In [113]: ts = pd.Series(np.random.randn(len(rng)), index=rng)
    
    In [114]: ts
    Out[114]: 
    2012-01-31   -1.134623
    2012-02-29   -1.561819
    2012-03-31   -0.260838
    2012-04-30    0.281957
    2012-05-31    1.523962
    Freq: M, dtype: float64
    
    In [115]: ps = ts.to_period()
    
    In [116]: ps
    Out[116]: 
    2012-01   -1.134623
    2012-02   -1.561819
    2012-03   -0.260838
    2012-04    0.281957
    2012-05    1.523962
    Freq: M, dtype: float64
    
    In [117]: ps.to_timestamp()
    Out[117]: 
    2012-01-01   -1.134623
    2012-02-01   -1.561819
    2012-03-01   -0.260838
    2012-04-01    0.281957
    2012-05-01    1.523962
    Freq: MS, dtype: float64
    

    Converting between period and timestamp enables some convenient arithmetic functions to be used. In the following example, we convert a quarterly frequency with year ending in November to 9am of the end of the month following the quarter end:

    In [118]: prng = pd.period_range('1990Q1', '2000Q4', freq='Q-NOV')
    
    In [119]: ts = pd.Series(np.random.randn(len(prng)), prng)
    
    In [120]: ts.index = (prng.asfreq('M', 'e') + 1).asfreq('H', 's') + 9
    
    In [121]: ts.head()
    Out[121]: 
    1990-03-01 09:00   -0.902937
    1990-06-01 09:00    0.068159
    1990-09-01 09:00   -0.057873
    1990-12-01 09:00   -0.368204
    1991-03-01 09:00   -1.144073
    Freq: H, dtype: float64
    

    Categoricals

    Since version 0.15, pandas can include categorical data in a DataFrame. For full docs, see the categorical introduction and the API documentation.

    In [122]: df = pd.DataFrame({"id":[1,2,3,4,5,6], "raw_grade":['a', 'b', 'b', 'a', 'a', 'e']})
    

    Convert the raw grades to a categorical data type.

    In [123]: df["grade"] = df["raw_grade"].astype("category")
    
    In [124]: df["grade"]
    Out[124]: 
    0    a
    1    b
    2    b
    3    a
    4    a
    5    e
    Name: grade, dtype: category
    Categories (3, object): [a, b, e]
    

    Rename the categories to more meaningful names (assigning to Series.cat.categories is inplace!)

    In [125]: df["grade"].cat.categories = ["very good", "good", "very bad"]
    

    Reorder the categories and simultaneously add the missing categories (methods under Series .cat return a new Series per default).

    In [126]: df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium", "good", "very good"])
    
    In [127]: df["grade"]
    Out[127]: 
    0    very good
    1         good
    2         good
    3    very good
    4    very good
    5     very bad
    Name: grade, dtype: category
    Categories (5, object): [very bad, bad, medium, good, very good]
    

    Sorting is per order in the categories, not lexical order.

    In [128]: df.sort_values(by="grade")
    Out[128]: 
       id raw_grade      grade
    5   6         e   very bad
    1   2         b       good
    2   3         b       good
    0   1         a  very good
    3   4         a  very good
    4   5         a  very good
    

    Grouping by a categorical column shows also empty categories.

    In [129]: df.groupby("grade").size()
    Out[129]: 
    grade
    very bad     1
    bad          0
    medium       0
    good         2
    very good    3
    dtype: int64
    

    Plotting

    Plotting docs.

    In [130]: ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
    
    In [131]: ts = ts.cumsum()
    
    In [132]: ts.plot()
    Out[132]: <matplotlib.axes._subplots.AxesSubplot at 0x10efd5a90>
    
    _images/series_plot_basic.png

    On DataFrame, plot() is a convenience to plot all of the columns with labels:

    In [133]: df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index,
       .....:                   columns=['A', 'B', 'C', 'D'])
       .....: 
    
    In [134]: df = df.cumsum()
    
    In [135]: plt.figure(); df.plot(); plt.legend(loc='best')
    Out[135]: <matplotlib.legend.Legend at 0x112854d90>
    
    _images/frame_plot_basic.png

    Getting Data In/Out

    CSV

    Writing to a csv file

    In [136]: df.to_csv('foo.csv')
    

    Reading from a csv file

    In [137]: pd.read_csv('foo.csv')
    Out[137]: 
         Unnamed: 0          A          B         C          D
    0    2000-01-01   0.266457  -0.399641 -0.219582   1.186860
    1    2000-01-02  -1.170732  -0.345873  1.653061  -0.282953
    2    2000-01-03  -1.734933   0.530468  2.060811  -0.515536
    3    2000-01-04  -1.555121   1.452620  0.239859  -1.156896
    4    2000-01-05   0.578117   0.511371  0.103552  -2.428202
    5    2000-01-06   0.478344   0.449933 -0.741620  -1.962409
    6    2000-01-07   1.235339  -0.091757 -1.543861  -1.084753
    ..          ...        ...        ...       ...        ...
    993  2002-09-20 -10.628548  -9.153563 -7.883146  28.313940
    994  2002-09-21 -10.390377  -8.727491 -6.399645  30.914107
    995  2002-09-22  -8.985362  -8.485624 -4.669462  31.367740
    996  2002-09-23  -9.558560  -8.781216 -4.499815  30.518439
    997  2002-09-24  -9.902058  -9.340490 -4.386639  30.105593
    998  2002-09-25 -10.216020  -9.480682 -3.933802  29.758560
    999  2002-09-26 -11.856774 -10.671012 -3.216025  29.369368
    
    [1000 rows x 5 columns]
    

    HDF5

    Reading and writing to HDFStores

    Writing to a HDF5 Store

    In [138]: df.to_hdf('foo.h5','df')
    

    Reading from a HDF5 Store

    In [139]: pd.read_hdf('foo.h5','df')
    Out[139]: 
                        A          B         C          D
    2000-01-01   0.266457  -0.399641 -0.219582   1.186860
    2000-01-02  -1.170732  -0.345873  1.653061  -0.282953
    2000-01-03  -1.734933   0.530468  2.060811  -0.515536
    2000-01-04  -1.555121   1.452620  0.239859  -1.156896
    2000-01-05   0.578117   0.511371  0.103552  -2.428202
    2000-01-06   0.478344   0.449933 -0.741620  -1.962409
    2000-01-07   1.235339  -0.091757 -1.543861  -1.084753
    ...               ...        ...       ...        ...
    2002-09-20 -10.628548  -9.153563 -7.883146  28.313940
    2002-09-21 -10.390377  -8.727491 -6.399645  30.914107
    2002-09-22  -8.985362  -8.485624 -4.669462  31.367740
    2002-09-23  -9.558560  -8.781216 -4.499815  30.518439
    2002-09-24  -9.902058  -9.340490 -4.386639  30.105593
    2002-09-25 -10.216020  -9.480682 -3.933802  29.758560
    2002-09-26 -11.856774 -10.671012 -3.216025  29.369368
    
    [1000 rows x 4 columns]
    

    Excel

    Reading and writing to MS Excel

    Writing to an excel file

    In [140]: df.to_excel('foo.xlsx', sheet_name='Sheet1')
    

    Reading from an excel file

    In [141]: pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA'])
    Out[141]: 
                        A          B         C          D
    2000-01-01   0.266457  -0.399641 -0.219582   1.186860
    2000-01-02  -1.170732  -0.345873  1.653061  -0.282953
    2000-01-03  -1.734933   0.530468  2.060811  -0.515536
    2000-01-04  -1.555121   1.452620  0.239859  -1.156896
    2000-01-05   0.578117   0.511371  0.103552  -2.428202
    2000-01-06   0.478344   0.449933 -0.741620  -1.962409
    2000-01-07   1.235339  -0.091757 -1.543861  -1.084753
    ...               ...        ...       ...        ...
    2002-09-20 -10.628548  -9.153563 -7.883146  28.313940
    2002-09-21 -10.390377  -8.727491 -6.399645  30.914107
    2002-09-22  -8.985362  -8.485624 -4.669462  31.367740
    2002-09-23  -9.558560  -8.781216 -4.499815  30.518439
    2002-09-24  -9.902058  -9.340490 -4.386639  30.105593
    2002-09-25 -10.216020  -9.480682 -3.933802  29.758560
    2002-09-26 -11.856774 -10.671012 -3.216025  29.369368
    
    [1000 rows x 4 columns]
    

    Gotchas

    If you are trying an operation and you see an exception like:

    >>> if pd.Series([False, True, False]):
        print("I was true")
    Traceback
        ...
    ValueError: The truth value of an array is ambiguous. Use a.empty, a.any() or a.all().
    

    See Comparisons for an explanation and what to do.

    See Gotchas as well.

  • 相关阅读:
    LoadRunner出现error问题及解决方法总结
    使用cookie绕过登录进行性能测试
    性能测试中如何定位性能瓶颈
    关于函数lr_eval_string
    Loadrunner脚本编程(1)大体思路
    Myeclipse 9集成 TestNG
    Page Speed
    Android problems
    10204_vista_w2k8_x64_production_db oracle installed on windows7 64bits
    Don't Live with Broken windows——不能容忍破窗户
  • 原文地址:https://www.cnblogs.com/lizunicon/p/5805300.html
Copyright © 2020-2023  润新知