神经网络with AMD 显卡
前言
- 自己脑残,当年买了个A卡,有点兴趣,构建了一下Caffe-opencl
- 重要经验:重新构建一定要make clean
参考
Problem with greentea
Github-caffe-opencl
TestSharedWeightsUpdate Test Failed
opencl-caffe github page
amd opencl-zone
Setup clBLAS and OpenCL
记录
安装私有显卡驱动程序
- 到官网即可
安装显卡APPSDK
- 到官网即可
- 记住clinfo查看情况,如果没有查看到AMD APP,则按下步骤解决
- sudo apt-get install fglrx fglrx-core fglrx-amdcccle fglrx-dev fglrx-pxpress
安装CUDA(不要安装!)
- sudo apt-get install nvidia-cuda-toolkit
安装boost
- sudo apt-get install libboost-all-dev
安装googletest
- sudo apt-get install libgtest-dev
使用ACML数学库(AMD Concurrent Mathmatical Library)
先安装gfortran
- sudo apt-get install gfortran
- 查看自己CPU支持哪些指令集,本机支持SSE2,AVX,只要支持AVX或者FMA4就可以使用这个库加速以提高性能,不然就不行
- cat /proc/cpuinfo | grep flags
安装ACML
- sudo mv ./acml6.1.0 /opt
- 编译时一般使用动态链接库,要使用动态链接库,需设置环境变量LD_LIBRARY_PATH
- If you have an SMP machine and want to take best advantage of it, link against the
gfortran OpenMP version of ACML like this: - 由于本机不是多处理器机器,所以使用gfortran64
- 到底是不是呢?多核处理器应该也是多处理器才对啊~加到变量里面再说吧!
- If you have an SMP machine and want to take best advantage of it, link against the
- echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/acml6.1.0/gfortran64/lib' >> ~/.bashrc
- echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/acml6.1.0/gfortran64_mp/lib' >> ~/.bashrc
- source ~/.bashrc
- 环境变量立即生效
- 示例程序在/opt/acml6.1.0/gfrotran64/examples
- 使用GNUMakefile进行编译
- 使用计时程序画图表示
- sudo apt-get install gnuplot
- 编译时使用多线程
- % make OMP_NUM_THREADS=2
- 编译时画时间图
- % make plots
- You may need to edit the GNUmakefile to point at the correct location of your
installed copy of the ACML, or to change compilers and flags.
安装cIBLAS(a software library containing BLAS functions written in OpenCL)
- git clone
- cd src & mkdir build & cd build
- cmake ..
- sudo make
- collect2: error: ld returned 1 exit status
- make[2]: * [staging/test-correctness] Error 1
- make[1]: * [tests/CMakeFiles/test-correctness.dir/all] Error 2
- make: * [all] Error 2
- 这是个BUG,去下载dev版本的clBLAS吧
- 还没解决。。。看帖子
- 检查gcc(4.8.4),CMake(2.8.12.2),Make(3.8.1)版本
- 检查各个依赖项的配置是否正确
- OPENCL配置
- 无误
- boost
- 没有设置环境变量
- export BOOST_ROOT=/usr/lib/x86_64-linux-gnu
- gTest
- 已经安装好了
- 不仅要装clACML,也要装ACML
- 早就装好了
- clBLAS
- install cmake-gui
- 检查cmake 输出
- sudo apt-get install liblapack-dev
- 成功!!!
- 安装在/usr/local/lib64
- export CLBALS_ROOT=/usr/local/lib64
- /usr/local/include
安装Caffe-opencl
- sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler
- sudo apt-get install --no-install-recommends libboost-all-dev
- sudo apt-get install libatlas-base-dev
- sudo apt-get install the python-dev
- sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev
- compile opencl-caffe
- 修改Makefile.config
# Override BLAS, use clBLAS insead of ViennaclBLAS.
USE_CLBLAS := 1
# Custom clBLAS lib and include directories.
CLBLAS_INCLUDE := /usr/local/include
CLBLAS_LIB := /usr/local/lib64
...
# CUDA directory contains bin/ and lib/ directories that we need.
# CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
CUDA_DIR := /usr
- make
- make runtest
- 出错,发现还是GREENTEA的问题,决定重新安装Vienna库(/usr/local/include/)
- 记住,重新构建一定要make clean
- 还有一个测试错误
That's ok, it's not actually a fail, the epsilon-distance between "is" and "should" is just a bit bigger than the test setting appreciates.
- 这只是计算误差而已,没有问题!
- 大功告成,开始使用
mnist实例
cd ./caffe-opencl
data/mnist/get_mnist.sh
examples/mnist/create_mnist.sh
examples/mnist/train_lenet.sh