• 【Stanford Machine Learning Open Course】13. week5编程题解


    这里是斯坦福大学机器学习网络课程的学习笔记。课程地址是:https://class.coursera.org/ml-2012-002/lecture/index

      
     
    本周题目有:
    1. sigmoid函数的梯度;
    2. 成本函数(正则化的)(正向传播);
    3. 梯度(正则化的)(反向传播);
    同时给我们提供了,check梯度法的代码。;
     
    实现:
    1. sigmoid函数的梯度
    function g = sigmoidGradient(z)
    
    g = zeros(size(z));
    g=sigmoid(z).*(1-sigmoid(z));
    
    end

    2. 成本函数(正则化的)(正向传播)3. 梯度(正则化的)(反向传播)

    function [J grad] = nnCostFunction(nn_params, ...
                                       input_layer_size, ...
                                       hidden_layer_size, ...
                                       num_labels, ...
                                       X, y, lambda)
    
    Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ...
                     hidden_layer_size, (input_layer_size + 1));
    
    Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ...
                     num_labels, (hidden_layer_size + 1));
    
    % Setup some useful variables
    m = size(X, 1);
             
    % You need to return the following variables correctly 
    J = 0;
    Theta1_grad = zeros(size(Theta1));
    Theta2_grad = zeros(size(Theta2));
    
    a1 = [ones(m,1) X]; %5000*401
    z2 = a1*Theta1';  %5000*25
    a2 = [ones(size(z2,1),1) sigmoid(z2)]; %5000*(25+1)
    z3 = a2*Theta2'; %5000*10
    a3 = sigmoid(z3);
    h=a3;
    
    %%for循环版
    J=0;
    for k = 1:num_labels
        y1 = (y==k);
        J = J + 1/m* sum( -y1.*log(h(:,k)) - (1-y1).*log(1-h(:,k)) );
    end
    
    %%完全向量化版
    J=0;
    Y=zeros(m,num_labels);
    for i=1:num_labels
        Y(:,i)=(y==i);
    end
    J = 1/m*sum(sum(-Y.*log(h)-(1-Y).*log(1-h)));
    
    %%正则化后
    J = J + lambda/2/m*( sum(sum(Theta1(:,2:end).^2)) + sum(sum(Theta2(:,2:end).^2)) );
    % compute delta
    delta3=zeros(m, num_labels);
    for k = 1 : num_labels
        delta3(:,k) = a3(:,k) - (y==k); %5000*10
    end
    delta2 = delta3 * Theta2 .* [ones(size(z2,1),1) sigmoidGradient(z2)]; %5000*26
    
    %compute Delta
    Delta1 = delta2(:,2:end)' * a1;  %25*401
    Delta2 = delta3' * a2; %10*26
    
    % compute Theta_grad
    Theta1_grad = 1/m*Delta1;
    Theta2_grad = 1/m*Delta2;
    
    % 正则化grad
    reg1 = lambda/m*Theta1;
    reg2 = lambda/m*Theta2;
    reg1(:,1) = 0;
    reg2(:,1) = 0;
    Theta1_grad = Theta1_grad + reg1;
    Theta2_grad = Theta2_grad + reg2;
    
    % Unroll gradients
    grad = [Theta1_grad(:) ; Theta2_grad(:)];
    
    
    end
     
     
     
     
     
  • 相关阅读:
    HTML_常用标签
    介绍Html_前端
    Mysql(2)数据类型与约束
    Mysql命令
    python_高级进阶(5)协程_事件
    python_高级进阶(4)同步_异步_回调函数_阻塞
    数据类型的补充以及各类型之间的相互转换
    二次编码
    坑坑坑坑坑坑----列表
    字典
  • 原文地址:https://www.cnblogs.com/liyuxia713/p/2723898.html
Copyright © 2020-2023  润新知