NPY and shot
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 808 Accepted Submission(s): 342
Problem Description
NPY
is going to have a PE test.One of the test subjects is throwing the
shot.The height of NPY is H meters.He can throw the shot at the speed of
v0 m/s and at the height of exactly H meters.He wonders if he throws
the shot at the best angle,how far can he throw ?(The acceleration of
gravity, g, is 9.8m/s2)
Input
The first line contains a integer T,which indicates the number of test cases.
The next T lines,each contains 2 integers H,which means the height of NPY,and v0(0≤v0≤10000m/s), which means the initial velocity.
The next T lines,each contains 2 integers H,which means the height of NPY,and v0(0≤v0≤10000m/s), which means the initial velocity.
Output
For
each query,print a real number X that was rounded to 2 digits after
decimal point in a separate line.X indicates the farthest distance he
can throw.
Sample Input
2
0 1
1 2
Sample Output
0.10
0.99
Hint
If the height of NPY is 0,and he throws the shot at the 45° angle, he can throw farthest.Source
题意:求解斜抛运动能够抛到的最远距离。
题解:设速度与水平方向成的角度为 a (0<=a<=pi/2) 我们可以知道这个 a 在这个范围内是一个单峰极值函数,所以可以用三分求解.
水平速度为 v0*cos(a) 竖直方向速度为 v0*sin(a)
假设小球落地的时间为 t = t1+t2 t1是小球到达顶点的时间,t2是小球从顶点落向地面的时间.
v0*sin(a)-g*t1 = 0 (注意加速度方向)
1/2*g*t2*t2 = h+v0*sin(a)*t1-1/2*g*t1*t1
x = v0*cos(a)*(t1+t2)
带进三分公式算就好了.
#include<stdio.h> #include<iostream> #include<string.h> #include <stdlib.h> #include<math.h> #include<algorithm> using namespace std; double v,h,t1,t2; const double g = 9.8; const double pi = 3.1415926; const double eps = 1e-8; double Calc(double t) { t1 = sin(t)*v/g; t2 = sqrt((h+v*sin(t)*t1-0.5*g*t1*t1)*2/g); return (t1+t2)*v*cos(t); } double solve(double MIN,double MAX) { double Left, Right; double mid, midmid; double mid_value, midmid_value; Left = MIN; Right = MAX; while (Left +eps < Right) { mid = (Left + Right) / 2; midmid = (mid + Right) / 2; mid_value = Calc(mid); midmid_value = Calc(midmid); ///求最大值改成>= 最小值改成<= if (mid_value >= midmid_value) Right = midmid; else Left = mid; } return Left; } int main() { int tcase; scanf("%d",&tcase); while(tcase--) { scanf("%lf%lf",&h,&v); double angle = solve(0,pi/2); ///注意是[0,pi/2],不是[0,90] printf("%.2lf ",Calc(angle)); } return 0; }