Reading comprehension
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1270 Accepted Submission(s): 512
Problem Description
Read the program below carefully then answer the question.
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include<iostream>
#include <cstring>
#include <cmath>
#include <algorithm>
#include<vector>
const int MAX=100000*2;
const int INF=1e9;
int main()
{
int n,m,ans,i;
while(scanf("%d%d",&n,&m)!=EOF)
{
ans=0;
for(i=1;i<=n;i++)
{
if(i&1)ans=(ans*2+1)%m;
else ans=ans*2%m;
}
printf("%d ",ans);
}
return 0;
}
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include<iostream>
#include <cstring>
#include <cmath>
#include <algorithm>
#include<vector>
const int MAX=100000*2;
const int INF=1e9;
int main()
{
int n,m,ans,i;
while(scanf("%d%d",&n,&m)!=EOF)
{
ans=0;
for(i=1;i<=n;i++)
{
if(i&1)ans=(ans*2+1)%m;
else ans=ans*2%m;
}
printf("%d ",ans);
}
return 0;
}
Input
Multi test cases,each line will contain two integers n and m. Process to end of file.
[Technical Specification]
1<=n, m <= 1000000000
[Technical Specification]
1<=n, m <= 1000000000
Output
For each case,output an integer,represents the output of above program.
Sample Input
1 10
3 100
Sample Output
1
5
Source
这个题就是需要用log(n)解决上面的程序问题。
然后我们找奇数项的关系。
f[2k+1] = 2*f[2k] + 1 (k>=1)
f[2k] = 2*f[2k-1]
代入可得 f[2k+1] = 4*f[2k-1]+1 => bi = 4*bi-1+1
bi = 4*bi-1+1
bi-1 = 4*bi-2+1
..
b3 = 4*b2 + 1
b2 = 4*b1 +1
可得bk = 1+4+4^2+....+4^k-1
k与n之间的映射是 k = (n+1)/2 然后带入模板算就OK。偶数的话乘2.
#include <cstdio> #include<iostream> #include <cstring> #include <cmath> #include <algorithm> #include<vector> typedef long long LL; LL mod; LL pow_mod(LL a,LL n){ LL ans = 1; while(n){ if(n&1) ans=ans*a%mod; a= a*a%mod; n>>=1; } return ans; } LL cal(LL p,LL n){ ///这里是递归求解等比数列模板 1+p+p^2...+p^n if(n==0) return 1; if(n&1){///(1+p+p^2+....+p^(n/2))*(1+p^(n/2+1)); return (1+pow_mod(p,n/2+1))*cal(p,n/2)%mod; } else { ///(1+p+p^2+....+p^(n/2-1))*(1+p^(n/2+1))+p^(n/2); return (pow_mod(p,n/2)+(1+pow_mod(p,n/2+1))*cal(p,n/2-1))%mod; } } int main() { LL n; while(scanf("%lld%lld",&n,&mod)!=EOF) { if(n==1&&mod==1) { printf("0 "); continue; } LL k = (n+1)/2; LL ans = cal(4,k-1); if(n&1){ printf("%lld ",ans); }else { printf("%lld ",ans*2%mod); } } return 0; }