• poj 3614(网络流)


    Sunscreen
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 6672   Accepted: 2348

    Description

    To avoid unsightly burns while tanning, each of the C (1 ≤ C ≤ 2500) cows must cover her hide with sunscreen when they're at the beach. Cow i has a minimum and maximum SPF rating (1 ≤ minSPFi ≤ 1,000; minSPFimaxSPFi ≤ 1,000) that will work. If the SPF rating is too low, the cow suffers sunburn; if the SPF rating is too high, the cow doesn't tan at all........

    The cows have a picnic basket with L (1 ≤ L ≤ 2500) bottles of sunscreen lotion, each bottle i with an SPF rating SPFi (1 ≤ SPFi ≤ 1,000). Lotion bottle i can cover coveri cows with lotion. A cow may lotion from only one bottle.

    What is the maximum number of cows that can protect themselves while tanning given the available lotions?

    Input

    * Line 1: Two space-separated integers: C and L
    * Lines 2..C+1: Line i describes cow i's lotion requires with two integers: minSPFi and maxSPFi
    * Lines C+2..C+L+1: Line i+C+1 describes a sunscreen lotion bottle i with space-separated integers: SPFi and coveri

    Output

    A single line with an integer that is the maximum number of cows that can be protected while tanning

    Sample Input

    3 2
    3 10
    2 5
    1 5
    6 2
    4 1

    Sample Output

    2

    Source

     

    题意:N头牛,第I头需要一个SPF的范围是MinSPF~MaxSPF,m个bottle,每个bottle能给C头牛提供定值为P的SPF,求最多有多少头牛可以得到合适的SPF.

    题解:设立超级源点S和超级汇点T,S向每个Bottle引一条容量为P的边,如果牛可以忍受这个bottle的SPF,那么就连一条容量为1的边,最后所有的牛像汇点引一条容量为1的边,求最大流即可。

    #include <stdio.h>
    #include <algorithm>
    #include <queue>
    #include <string.h>
    #include <math.h>
    #include <iostream>
    #include <math.h>
    using namespace std;
    const int N = 5005;
    const int INF = 999999999;
    struct Edge
    {
        int v,next;
        int w;
    } edge[N*N];
    struct Cow{
        int minSPF,maxSPF;
    }cow[N/2];
    int head[N];
    int level[N];
    int tot;
    void init()
    {
        memset(head,-1,sizeof(head));
        tot=0;
    }
    void addEdge(int u,int v,int w,int &k)
    {
        edge[k].v = v,edge[k].w=w,edge[k].next=head[u],head[u]=k++;
        edge[k].v = u,edge[k].w=0,edge[k].next=head[v],head[v]=k++;
    }
    int BFS(int src,int des)
    {
        queue<int >q;
        memset(level,0,sizeof(level));
        level[src]=1;
        q.push(src);
        while(!q.empty())
        {
            int u = q.front();
            q.pop();
            if(u==des) return 1;
            for(int k = head[u]; k!=-1; k=edge[k].next)
            {
                int v = edge[k].v;
                int w = edge[k].w;
                if(level[v]==0&&w!=0)
                {
                    level[v]=level[u]+1;
                    q.push(v);
                }
            }
        }
        return -1;
    }
    int dfs(int u,int des,int increaseRoad){
        if(u==des||increaseRoad==0) return increaseRoad;
        int ret=0;
        for(int k=head[u];k!=-1;k=edge[k].next){
            int v = edge[k].v,w=edge[k].w;
            if(level[v]==level[u]+1&&w!=0){
                int MIN = min(increaseRoad-ret,w);
                w = dfs(v,des,MIN);
                if(w > 0)
                {
                    edge[k].w -=w;
                    edge[k^1].w+=w;
                    ret+=w;
                    if(ret==increaseRoad) return ret;
                }
                else level[v] = -1;
                if(increaseRoad==0) break;
            }
        }
        if(ret==0) level[u]=-1;
        return ret;
    }
    int Dinic(int src,int des)
    {
        int ans = 0;
        while(BFS(src,des)!=-1) ans+=dfs(src,des,INF);
        return ans;
    }
    int main()
    {
        int c,l;
        scanf("%d%d",&c,&l);
        init();
        int src = 0,des = c+l+1;
        for(int i=1; i<=c; i++)
        {
            scanf("%d%d",&cow[i].minSPF,&cow[i].maxSPF);
            addEdge(i+l,des,1,tot);
        }
        for(int i=1; i<=l; i++)
        {
            int a,b;
            scanf("%d%d",&a,&b);
            addEdge(src,i,b,tot);
            for(int j=1; j<=c; j++)
            {
                if(a>=cow[j].minSPF&&a<=cow[j].maxSPF)
                {
                    addEdge(i,j+l,1,tot);
                }
            }
        }
        printf("%d
    ",Dinic(src,des));
    }
  • 相关阅读:
    Base64编码原理分析
    对 js 高程 Preflighted Reqeusts 的理解
    js 跨域 之 修改服务器配置-XAMPP-Apache (nginx 拉到最后!)
    js 模拟 select 的 click 事件
    串讲-解释篇:作用域,作用域链,执行环境,变量对象,活动对象,闭包
    js 匿名函数-立即调用的函数表达式
    Java I/O流输入输出,序列化,NIO,NIO.2
    Java8Lambda表达式
    设计模式之适配器模式
    设计模式之装饰器设计模式
  • 原文地址:https://www.cnblogs.com/liyinggang/p/5555063.html
Copyright © 2020-2023  润新知