Fibonacci Tree
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4028 Accepted Submission(s): 1252
Problem Description
Coach Pang is interested in Fibonacci numbers while Uncle Yang wants
him to do some research on Spanning Tree. So Coach Pang decides to solve
the following problem:
Consider a bidirectional graph G with N vertices and M edges. All edges are painted into either white or black. Can we find a Spanning Tree with some positive Fibonacci number of white edges?
(Fibonacci number is defined as 1, 2, 3, 5, 8, ... )
Consider a bidirectional graph G with N vertices and M edges. All edges are painted into either white or black. Can we find a Spanning Tree with some positive Fibonacci number of white edges?
(Fibonacci number is defined as 1, 2, 3, 5, 8, ... )
Input
The first line of the input contains an integer T, the number of test cases.
For each test case, the first line contains two integers N(1 <= N <= 105) and M(0 <= M <= 105).
Then M lines follow, each contains three integers u, v (1 <= u,v <= N, u<> v) and c (0 <= c <= 1), indicating an edge between u and v with a color c (1 for white and 0 for black).
For each test case, the first line contains two integers N(1 <= N <= 105) and M(0 <= M <= 105).
Then M lines follow, each contains three integers u, v (1 <= u,v <= N, u<> v) and c (0 <= c <= 1), indicating an edge between u and v with a color c (1 for white and 0 for black).
Output
For each test case, output a line “Case #x: s”. x is the case number
and s is either “Yes” or “No” (without quotes) representing the answer
to the problem.
Sample Input
2
4 4
1 2 1
2 3 1
3 4 1
1 4 0
5 6
1 2 1
1 3 1
1 4 1
1 5 1
3 5 1
4 2 1
Sample Output
Case #1: Yes
Case #2: No
题意:n个点m条边,其中有一些边是白边,一些边是黑边,问是否存在一棵树上的白边数量是斐波拉契数列里面的某个数.
题解:很巧妙的思想,先按白边排序将白边最多的树选出来,然后黑边排序将白边最少的树选出来。然后如果有斐波拉契数在两棵树的大小中间(因为如果存在的话,是可以通过删边得到的),如果存在,就Ok,还要判一下连通分量。
#include <stdio.h> #include <algorithm> #include <string.h> #include <math.h> #include <queue> using namespace std; const int N = 100005; int father[N]; struct Edge{ int u,v,color; }edge[N]; int _find(int x){ if(x!=father[x]) { father[x] = _find(father[x]); } return father[x]; } int n,m; int cmp(Edge a,Edge b){ return a.color>b.color; } int cmp1(Edge a,Edge b){ return a.color<b.color; } int kruskal(){ int cost=0; for(int i=0;i<m;i++){ int x=_find(edge[i].u); int y=_find(edge[i].v); if(x!=y){ father[x] = y; cost+=edge[i].color; } } return cost; } bool vis[N]; void init(){ memset(vis,false,sizeof(vis)); int a=1,b=2; vis[1]=true,vis[2] =true; while(a+b<N){ vis[a+b]=true; swap(a,b); b = a+b; } } int main() { int tcase; scanf("%d",&tcase); int t = 1; init(); while(tcase--){ scanf("%d%d",&n,&m); for(int i=0;i<m;i++){ scanf("%d%d%d",&edge[i].u,&edge[i].v,&edge[i].color); } for(int i=1;i<=n;i++) father[i] = i; sort(edge,edge+m,cmp); int maxn = kruskal(); int ans = 0; for(int i=1;i<=n;i++){ if(father[i]==i) ans++; if(ans>1) break; } if(ans>1) { printf("Case #%d: No ",t++); continue; } for(int i=1;i<=n;i++) father[i] = i; sort(edge,edge+m,cmp1); int minn = kruskal(); ans = 0; for(int i=1;i<=n;i++){ if(father[i]==i) ans++; if(ans>1) break; } if(ans>1) { printf("Case #%d: No ",t++); continue; } //printf("%d %d ",minn,maxn); bool flag = false; for(int i=minn;i<=maxn;i++){ if(vis[i]){ flag = true; break; } } if(flag) printf("Case #%d: Yes ",t++); else printf("Case #%d: No ",t++); } return 0; }