• hdu 1081(最大子矩阵)


    To The Max

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 10920    Accepted Submission(s): 5229


    Problem Description
    Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.

    As an example, the maximal sub-rectangle of the array:

    0 -2 -7 0
    9 2 -6 2
    -4 1 -4 1
    -1 8 0 -2

    is in the lower left corner:

    9 2
    -4 1
    -1 8

    and has a sum of 15.
     
    Input
    The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
     
    Output
    Output the sum of the maximal sub-rectangle.
     
    Sample Input
    4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
     
    Sample Output
    15
     
    实质上是最大子段和问题,最大子矩阵我们将其所有的行都枚举出来,然后将其合并成一行,然后就可以用最大连续子段和求最大值,得到最大子矩阵。
     
    最大子段和:
        令b[j]表示以位置 j 为终点的所有子区间中和最大的一个
        子问题:如j为终点的最大子区间包含了位置j-1,则以j-1为终点的最大子区间必然包括在其中
        如果b[j-1] >0, 那么显然b[j] = b[j-1] + a[j],用之前最大的一个加上a[j]即可,因为a[j]必须包含
        如果b[j-1]<=0,那么b[j] = a[j] ,因为既然最大,前面的负数必然不能使你更大
       状态转移方程 dp[j] = max(dp[j-1]+a[j],a[j])(0<j<=n)
    #include<iostream>
    #include<cstdio>
    #include<algorithm>
    #include <string.h>
    #include <math.h>
    using namespace std;
    const int N = 101;
    int mp[N][N],b[N];
    int n;
    
    int getMax()
    {
        int t = 0,mx = -1;
        int dp[N+1]= {0};
        for(int i=1; i<=n; i++)///从1开始枚举
        {
            if(dp[i-1]>0) dp[i] = dp[i-1]+b[i-1];
            else dp[i]=b[i-1];
            mx = max(mx,dp[i]);
        }
        return mx;
    }
    int solve()
    {
        int mx = -1;
        for(int i=0; i<n; i++)
        {
            for(int j=i; j<n; j++)
            {
                memset(b,0,sizeof(b));
                for(int k=0; k<n; k++)
                    for(int l=i; l<=j; l++)
                        b[k]+=mp[l][k];
                mx = max(mx,getMax());
            }
        }
        return mx;
    }
    int main()
    {
        while(scanf("%d",&n)!=EOF)
        {
            for(int i=0; i<n; i++)
            {
                for(int j=0; j<n; j++)
                    scanf("%d",&mp[i][j]);
            }
            int mx = solve();
            printf("%d
    ",mx);
        }
        return 0;
    }
     
  • 相关阅读:
    ADO.NET基础必备之SqlDataAdapter 类
    简单的JS动画的实现 文字在页面飘动
    命名空间与程序集的简单比较
    复习ADO.NET的ExecuteReader()方法
    初学SSIS要明白的几个概念
    复习ADO.NET的ExecuteNonQuery()方法
    Spending My Time (消磨时光)
    Building a WPF Sudoku Game: Part 5 The AI Battle: Loading and Comparing AI Plugins
    Building a WPF Sudoku Game, Part 2: The Board UI and Validation
    Building a WPF Sudoku Game, Part 1: Introduction to WPF and XAML
  • 原文地址:https://www.cnblogs.com/liyinggang/p/5371384.html
Copyright © 2020-2023  润新知