问题描述
某国有n个城市,为了使得城市间的交通更便利,该国国王打算在城市之间修一些高速公路,由于经费限制,国王打算第一阶段先在部分城市之间修一些单向的高速公路。
现在,大臣们帮国王拟了一个修高速公路的计划。看了计划后,国王发现,有些城市之间可以通过高速公路直接(不经过其他城市)或间接(经过一个或多个其他城市)到达,而有的却不能。如果城市A可以通过高速公路到达城市B,而且城市B也可以通过高速公路到达城市A,则这两个城市被称为便利城市对。
国王想知道,在大臣们给他的计划中,有多少个便利城市对。
现在,大臣们帮国王拟了一个修高速公路的计划。看了计划后,国王发现,有些城市之间可以通过高速公路直接(不经过其他城市)或间接(经过一个或多个其他城市)到达,而有的却不能。如果城市A可以通过高速公路到达城市B,而且城市B也可以通过高速公路到达城市A,则这两个城市被称为便利城市对。
国王想知道,在大臣们给他的计划中,有多少个便利城市对。
输入格式
输入的第一行包含两个整数n, m,分别表示城市和单向高速公路的数量。
接下来m行,每行两个整数a, b,表示城市a有一条单向的高速公路连向城市b。
接下来m行,每行两个整数a, b,表示城市a有一条单向的高速公路连向城市b。
输出格式
输出一行,包含一个整数,表示便利城市对的数量。
样例输入
5 5
1 2
2 3
3 4
4 2
3 5
1 2
2 3
3 4
4 2
3 5
样例输出
3
样例说明
城市间的连接如图所示。有3个便利城市对,它们分别是(2, 3), (2, 4), (3, 4),请注意(2, 3)和(3, 2)看成同一个便利城市对。
评测用例规模与约定
前30%的评测用例满足1 ≤ n ≤ 100, 1 ≤ m ≤ 1000;
前60%的评测用例满足1 ≤ n ≤ 1000, 1 ≤ m ≤ 10000;
所有评测用例满足1 ≤ n ≤ 10000, 1 ≤ m ≤ 100000。
前60%的评测用例满足1 ≤ n ≤ 1000, 1 ≤ m ≤ 10000;
所有评测用例满足1 ≤ n ≤ 10000, 1 ≤ m ≤ 100000。
在CCF的平台上无限编译错误,,我不知道为什么。。。
import java.util.Scanner; public class Main { static class Edge { // 邻接表 int v; int next; } static int[] first;// first[]头结点数组 static int tot; static int n, m; // 节点数,边数 static Edge[] edge; // 边 static int []Stack; static int top; static boolean[] inStack; static int[] DFN; // DFN[]为深搜次序数组(标记时间) static int[] low; // Low[u]为u结点或者u的子树结点所能追溯到的最早栈中结点的次序号 static int Count, cnt; // Count记录强连通分量 static int[] Belong;// Belong[]为每个结点所对应的强连通分量标号数组 public static void main(String[] args) { Scanner sc = new Scanner(System.in); n = sc.nextInt(); m = sc.nextInt(); tot = 0; Count = 0; cnt = 0; Stack = new int[n+1]; top=0; edge = new Edge[m + 1]; first = new int[n + 1]; for (int i = 1; i <= n; i++) { first[i] = -1; } Belong = new int[n + 1]; DFN = new int[n + 1]; low = new int[n + 1]; inStack = new boolean[n + 1]; int u, v; for (int i = 0; i < m; i++) { u = sc.nextInt(); v = sc.nextInt(); addEdge(u, v); } cnt = 0; int[] hash = new int[n + 1]; for (int i = 1; i <= n; i++) { if (DFN[i] == 0) { Targin(i); } } for (int i = 1; i <= n; i++) { hash[Belong[i]]++; } int sum = 0; for (int i = 1; i <= Count; i++) { if (hash[i] != 1) { sum = sum + hash[i] * (hash[i] - 1) / 2; // 除以2的原因是2-3 和 3-2是一条 } } System.out.println(sum); } private static void Targin(int u) { DFN[u] = low[u] = ++cnt; inStack[u] = true; Stack[top++]=u; // 枚举边 for (int e = first[u]; e != -1; e = edge[e].next) { int v = edge[e].v; if (DFN[v] == 0) { // j没被访问过 Targin(v); // 更新结点u所能到达的最小次数层 if (low[u] > low[v]) low[u] = low[v]; } else if (inStack[v] && low[u] > DFN[v]) {// 如果v结点在栈内 low[u] = DFN[v]; } } if (DFN[u] == low[u]) { // 如果节点u是强连通分量的根 Count++; int v; do { v = Stack[--top]; Belong[v] = Count; inStack[v] = false; } while (u != v); } } private static void addEdge(int u, int v) { // 构建邻接表 edge[tot] = new Edge(); edge[tot].v = v; edge[tot].next = first[u]; first[u] = tot++; } }