项目 |
内容 |
这个作业属于哪个课程 |
https://www.cnblogs.com/nwnu-daizh/ |
这个作业的要求在哪里 |
https://www.cnblogs.com/nwnu-daizh/p/11435127.html |
作业学习目标 |
|
第一部分:总结第八章关于泛型程序设计理论知
1.1 泛型概述
在前面学习集合时,我们都知道集合中是可以存放任意对象的,只要把对象存储集合后,那么这时他们都会被提升成Object类型。当我们在取出每一个对象,并且进行相应的操作,这时必须采用类型转换。
大家观察下面代码:
~~~java
public class GenericDemo {
public static void main(String[] args) {
Collection coll = new ArrayList();
coll.add("abc");
coll.add("itcast");
coll.add(5);//由于集合没有做任何限定,任何类型都可以给其中存放
Iterator it = coll.iterator();
while(it.hasNext()){
//需要打印每个字符串的长度,就要把迭代出来的对象转成String类型
String str = (String) it.next();
System.out.println(str.length());
}
}
}
~~~
程序在运行时发生了问题**java.lang.ClassCastException**。 为什么会发生类型转换异常呢? 我们来分析下:由于集合中什么类型的元素都可以存储。导致取出时强转引发运行时 ClassCastException。 怎么来解决这个问题呢? Collection虽然可以存储各种对象,但实际上通常Collection只存储同一类型对象。例如都是存储字符串对象。因此在JDK5之后,新增了**泛型**(**Generic**)语法,让你在设计API时可以指定类或方法支持泛型,这样我们使用API的时候也变得更为简洁,并得到了编译时期的语法检查。
* **泛型**:可以在类或方法中预支地使用未知的类型。
> tips:一般在创建对象时,将未知的类型确定具体的类型。当没有指定泛型时,默认类型为Object类型。
1.2 使用泛型的好处
上一节只是讲解了泛型的引入,那么泛型带来了哪些好处呢?
* 将运行时期的ClassCastException,转移到了编译时期变成了编译失败。
* 避免了类型强转的麻烦。
通过我们如下代码体验一下:
~~~java
public class GenericDemo2 {
public static void main(String[] args) {
Collection<String> list = new ArrayList<String>();
list.add("abc");
list.add("itcast");
// list.add(5);//当集合明确类型后,存放类型不一致就会编译报错
// 集合已经明确具体存放的元素类型,那么在使用迭代器的时候,迭代器也同样会知道具体遍历元素类型
Iterator<String> it = list.iterator();
while(it.hasNext()){
String str = it.next();
//当使用Iterator<String>控制元素类型后,就不需要强转了。获取到的元素直接就是String类型
System.out.println(str.length());
}
}
}
~~~
> tips:泛型是数据类型的一部分,我们将类名与泛型合并一起看做数据类型。
1.3 泛型的定义与使用
我们在集合中会大量使用到泛型,这里来完整地学习泛型知识。
泛型,用来灵活地将数据类型应用到不同的类、方法、接口当中。将数据类型作为参数进行传递。
定义和使用含有泛型的类
定义格式:
~~~
修饰符 class 类名<代表泛型的变量> { }
~~~
例如,API中的ArrayList集合:
~~~java
class ArrayList<E>{
public boolean add(E e){ }
public E get(int index){ }
....
}
~~~
使用泛型: 即什么时候确定泛型。
**在创建对象的时候确定泛型**
例如,`ArrayList<String> list = new ArrayList<String>();`
此时,变量E的值就是String类型,那么我们的类型就可以理解为:
~~~java
class ArrayList<String>{
public boolean add(String e){ }
public String get(int index){ }
...
}
~~~
再例如,`ArrayList<Integer> list = new ArrayList<Integer>();`
此时,变量E的值就是Integer类型,那么我们的类型就可以理解为:
~~~java
class ArrayList<Integer> {
public boolean add(Integer e) { }
public Integer get(int index) { }
...
}
~~~
举例自定义泛型类
~~~java
public class MyGenericClass<MVP> {
//没有MVP类型,在这里代表 未知的一种数据类型 未来传递什么就是什么类型
private MVP mvp;
public void setMVP(MVP mvp) {
this.mvp = mvp;
}
public MVP getMVP() {
return mvp;
}
}
~~~
使用:
~~~java
public class GenericClassDemo {
public static void main(String[] args) {
// 创建一个泛型为String的类
MyGenericClass<String> my = new MyGenericClass<String>();
// 调用setMVP
my.setMVP("大胡子登登");
// 调用getMVP
String mvp = my.getMVP();
System.out.println(mvp);
//创建一个泛型为Integer的类
MyGenericClass<Integer> my2 = new MyGenericClass<Integer>();
my2.setMVP(123);
Integer mvp2 = my2.getMVP();
}
}
~~~
含有泛型的方法
定义格式:
~~~
修饰符 <代表泛型的变量> 返回值类型 方法名(参数){ }
~~~
例如,
~~~java
public class MyGenericMethod {
public <MVP> void show(MVP mvp) {
System.out.println(mvp.getClass());
}
public <MVP> MVP show2(MVP mvp) {
return mvp;
}
}
~~~
使用格式:**调用方法时,确定泛型的类型**
~~~java
public class GenericMethodDemo {
public static void main(String[] args) {
// 创建对象
MyGenericMethod mm = new MyGenericMethod();
// 演示看方法提示
mm.show("aaa");
mm.show(123);
mm.show(12.45);
}
}
~~~
### 含有泛型的接口
定义格式:
~~~
修饰符 interface接口名<代表泛型的变量> { }
~~~
例如,
~~~java
public interface MyGenericInterface<E>{
public abstract void add(E e);
public abstract E getE();
}
~~~
使用格式:
**1、定义类时确定泛型的类型**
例如
~~~java
public class MyImp1 implements MyGenericInterface<String> {
@Override
public void add(String e) {
// 省略...
}
@Override
public String getE() {
return null;
}
}
~~~
此时,泛型E的值就是String类型。
**2、始终不确定泛型的类型,直到创建对象时,确定泛型的类型**
例如
~~~java
public class MyImp2<E> implements MyGenericInterface<E> {
@Override
public void add(E e) {
// 省略...
}
@Override
public E getE() {
return null;
}
}
~~~
确定泛型:
~~~java
/*
* 使用
*/
public class GenericInterface {
public static void main(String[] args) {
MyImp2<String> my = new MyImp2<String>();
my.add("aa");
}
}
~~~
1.4 泛型通配符
当使用泛型类或者接口时,传递的数据中,泛型类型不确定,可以通过通配符<?>表示。但是一旦使用泛型的通配符后,只能使用Object类中的共性方法,集合中元素自身方法无法使用。
通配符基本使用
泛型的通配符:**不知道使用什么类型来接收的时候,此时可以使用?,?表示未知通配符。**
此时只能接受数据,不能往该集合中存储数据。
举个例子大家理解使用即可:
~~~java
public static void main(String[] args) {
Collection<Intger> list1 = new ArrayList<Integer>();
getElement(list1);
Collection<String> list2 = new ArrayList<String>();
getElement(list2);
}
public static void getElement(Collection<?> coll){}
//?代表可以接收任意类型
~~~
> tips:泛型不存在继承关系 Collection<Object> list = new ArrayList<String>();这种是错误的。
#### 通配符高级使用----受限泛型
之前设置泛型的时候,实际上是可以任意设置的,只要是类就可以设置。但是在JAVA的泛型中可以指定一个泛型的**上限**和**下限**。
**泛型的上限**:
* **格式**: `类型名称 <? extends 类 > 对象名称`
* **意义**: `只能接收该类型及其子类`
**泛型的下限**:
- **格式**: `类型名称 <? super 类 > 对象名称`
- **意义**: `只能接收该类型及其父类型`
比如:现已知Object类,String 类,Number类,Integer类,其中Number是Integer的父类
~~~java
public static void main(String[] args) {
Collection<Integer> list1 = new ArrayList<Integer>();
Collection<String> list2 = new ArrayList<String>();
Collection<Number> list3 = new ArrayList<Number>();
Collection<Object> list4 = new ArrayList<Object>();
getElement(list1);
getElement(list2);//报错
getElement(list3);
getElement(list4);//报错
getElement2(list1);//报错
getElement2(list2);//报错
getElement2(list3);
getElement2(list4);
}
// 泛型的上限:此时的泛型?,必须是Number类型或者Number类型的子类
public static void getElement1(Collection<? extends Number> coll){}
// 泛型的下限:此时的泛型?,必须是Number类型或者Number类型的父类
public static void getElement2(Collection<? super Number> coll){}
~~~
第二部分:实验部分
实验1: 导入第8章示例程序,测试程序并进行代码注释。
测试程序1:
l 编辑、调试、运行教材311、312页代码,结合程序运行结果理解程序;
l 在泛型类定义及使用代码处添加注释;
l 掌握泛型类的定义及使用。
/** * @version 1.01 2012-01-26 * @author Cay Horstmann */ public class PairTest1 { public static void main(String[] args) { String[] words = { "Mary", "had", "a", "little", "lamb" };//初始化String对象数组 Pair<String> mm = ArrayAlg.minmax(words);//通过类名调用minmax方法 System.out.println("min = " + mm.getFirst()); System.out.println("max = " + mm.getSecond()); } } class ArrayAlg { /** * Gets the minimum and maximum of an array of strings. * @param a an array of strings * @return a pair with the min and max value, or null if a is null or empty */ public static Pair<String> minmax(String[] a)//实例化的一个Pair类对象 { if (a == null || a.length == 0) return null; String min = a[0]; String max = a[0]; for (int i = 1; i < a.length; i++) { if (min.compareTo(a[i]) > 0) min = a[i];//字符串对象比较, if (max.compareTo(a[i]) < 0) max = a[i]; } return new Pair<>(min, max);//泛型类作为返回值 }
package pair1; /** * @version 1.00 2004-05-10 * @author Cay Horstmann */ public class Pair<T> { private T first; private T second; public Pair() { first = null; second = null; } public Pair(T first, T second) { this.first = first; this.second = second; } public T getFirst() { return first; } public T getSecond() { return second; } public void setFirst(T newValue) { first = newValue; } public void setSecond(T newValue) { second = newValue; } }
运行结果:
测试程序2:
l 编辑、调试运行教材315页 PairTest2,结合程序运行结果理解程序;
l 在泛型程序设计代码处添加相关注释;
l 了解泛型方法、泛型变量限定的定义及用途。
package pair2; import java.time.*; /** * @version 1.02 2015-06-21 * @author Cay Horstmann */ public class PairTest2 { public static void main(String[] args) { //初始化LocalDate对象数组 LocalDate[] birthdays = { LocalDate.of(1906, 12, 9), // G. Hopper LocalDate.of(1815, 12, 10), // A. Lovelace LocalDate.of(1903, 12, 3), // J. von Neumann LocalDate.of(1910, 6, 22), // K. Zuse }; Pair<LocalDate> mm = ArrayAlg.minmax(birthdays);//通过类名调用minmax方法 System.out.println("min = " + mm.getFirst()); System.out.println("max = " + mm.getSecond()); } } class ArrayAlg { /** Gets the minimum and maximum of an array of objects of type T. @param a an array of objects of type T @return a pair with the min and max value, or null if a is null or empty */ public static <T extends Comparable> Pair<T> minmax(T[] a)//通过extends关键字增加上界约束的泛型方法 { if (a == null || a.length == 0) return null; T min = a[0]; T max = a[0]; for (int i = 1; i < a.length; i++) { if (min.compareTo(a[i]) > 0) min = a[i]; if (max.compareTo(a[i]) < 0) max = a[i]; } return new Pair<>(min, max);//范型类作为返回值 } }
运行结果:
测试程序3:
l 用调试运行教材335页 PairTest3,结合程序运行结果理解程序;
l 了解通配符类型的定义及用途。
public class PairTest3 { public static void main(String[] args) { Manager ceo = new Manager("Gus Greedy", 800000, 2003, 12, 15); Manager cfo = new Manager("Sid Sneaky", 600000, 2003, 12, 15); Pair<Manager> buddies = new Pair<>(ceo, cfo); printBuddies(buddies); ceo.setBonus(1000000); cfo.setBonus(500000); Manager[] managers = { ceo, cfo }; Pair<Employee> result = new Pair<>(); minmaxBonus(managers, result); System.out.println("first: " + result.getFirst().getName() + ", second: " + result.getSecond().getName()); maxminBonus(managers, result); System.out.println("first: " + result.getFirst().getName() + ", second: " + result.getSecond().getName()); } public static void printBuddies(Pair<? extends Employee> p)//通配符类型(带有上界)extends关键字所声明的上界既可以是一个类,也可以是一个接口。 { Employee first = p.getFirst(); Employee second = p.getSecond(); System.out.println(first.getName() + " and " + second.getName() + " are buddies."); } public static void minmaxBonus(Manager[] a, Pair<? super Manager> result)//通配符类型(带有下界)必须是Manager的子类 { if (a.length == 0) return; Manager min = a[0]; Manager max = a[0]; for (int i = 1; i < a.length; i++) { if (min.getBonus() > a[i].getBonus()) min = a[i]; if (max.getBonus() < a[i].getBonus()) max = a[i]; }//比较大小值 result.setFirst(min); result.setSecond(max); } public static void maxminBonus(Manager[] a, Pair<? super Manager> result)//通配符类型(带有下界) { minmaxBonus(a, result); PairAlg.swapHelper(result); //swapHelper捕获通配符类型 } //无法编写公共静态< T超级管理器> } class PairAlg { public static boolean hasNulls(Pair<?> p)//通过将hasNulls转换成泛型方法,避免使用通配符类型 { return p.getFirst() == null || p.getSecond() == null; } public static void swap(Pair<?> p) { swapHelper(p); } public static <T> void swapHelper(Pair<T> p)//使用辅助方法swapHelper(泛型方法),以在交换时临时保存第一个元素 { T t = p.getFirst(); p.setFirst(p.getSecond()); p.setSecond(t); }
public class Pair<T> { private T first; private T second; //T是未知类型,不代表值 public Pair() { first = null; second = null; } public Pair(T first, T second) { this.first = first; this.second = second; } public T getFirst() { return first; } public T getSecond() { return second; } public void setFirst(T newValue) { first = newValue; } public void setSecond(T newValue) { second = newValue; } }
import java.time.*; public class Employee//用户自定义类 { private String name; private double salary; private LocalDate hireDay; public Employee(String name, double salary, int year, int month, int day) { this.name = name; this.salary = salary; hireDay = LocalDate.of(year, month, day); } public String getName() { return name; } public double getSalary() { return salary; } public LocalDate getHireDay() { return hireDay; } public void raiseSalary(double byPercent) { double raise = salary * byPercent / 100; salary += raise; } }
public class Manager extends Employee//继承类 { private double bonus; /** @param name the employee's name @param salary the salary @param year the hire year @param month the hire month @param day the hire day */ public Manager(String name, double salary, int year, int month, int day) { super(name, salary, year, month, day); bonus = 0; } public double getSalary() { double baseSalary = super.getSalary(); return baseSalary + bonus; } public void setBonus(double b) { bonus = b; } public double getBonus() { return bonus; } }
运行结果:
实验2:结对编程练习
实验2:结对编程练习,将程序提交到PTA(2019面向对象程序设计基础知识测试题(2))
(1)编写一个泛型接口GeneralStack,要求类中方法对任何引用类型数据都适用。GeneralStack接口中方法如下:
push(item); //如item为null,则不入栈直接返回null。
pop(); //出栈,如为栈为空,则返回null。
peek(); //获得栈顶元素,如为空,则返回null.
public boolean empty();//如为空返回true
public int size(); //返回栈中元素数量
(2)定义GeneralStack的子类ArrayListGeneralStack,要求:
ü 类内使用ArrayList对象存储堆栈数据,名为list;
ü 方法: public String toString()//代码为return list.toString();
ü 代码中不要出现类型不安全的强制转换。
(3)定义Car类,类的属性有:
private int id;
private String name;
方法:Eclipse自动生成setter/getter,toString方法。
(4)main方法要求
ü 输入选项,有quit, Integer, Double, Car 4个选项。如果输入quit,程序直接退出。否则,输入整数m与n。m代表入栈个数,n代表出栈个数。然后声明栈变量stack。
ü 输入Integer,打印Integer Test。建立可以存放Integer类型的ArrayListGeneralStack。入栈m次,出栈n次。打印栈的toString方法。最后将栈中剩余元素出栈并累加输出。
ü 输入Double ,打印Double Test。剩下的与输入Integer一样。
ü 输入Car,打印Car Test。其他操作与Integer、Double基本一样。只不过最后将栈中元素出栈,并将其name依次输出。
特别注意:如果栈为空,继续出栈,返回null
输入样例
Integer
5
2
1 2 3 4 5
Double
5
3
1.1 2.0 4.9 5.7 7.2
Car
3
2
1 Ford
2 Cherry
3 BYD
quit
输出样例
Integer Test
push:1
push:2
push:3
push:4
push:5
pop:5
pop:4
[1, 2, 3]
sum=6
interface GeneralStack
Double Test
push:1.1
push:2.0
push:4.9
push:5.7
push:7.2
pop:7.2
pop:5.7
pop:4.9
[1.1, 2.0]
sum=3.1
interface GeneralStack
Car Test
push:Car [id=1, name=Ford]
push:Car [id=2, name=Cherry]
push:Car [id=3, name=BYD]
pop:Car [id=3, name=BYD]
pop:Car [id=2, name=Cherry]
[Car [id=1, name=Ford]]
Ford
interface GeneralStack
结对编程合作对象胡欢欢
结对编程实验代码:
GeneralStack接口:
package week111; public interface GeneralStack<T> { public T push(T item);//判断栈是否为空 public T pop();//出栈,如果栈为空则返回null public T peek();//获得栈顶元素,如果为空,则返回null public boolean empty();//如为空返回true public int size(); //返回栈中元素数量 }
/*car类*/
package week111; public class Car { private int id; private String name; public String toString() { return "Car ["+"id="+id+",name="+name+']'; } public int getId() { return id; } public void setId() { this.id=id; } public String getName(){ return name; } public void setName(String name) { this.name=name; } public Car(int id,String name) { this.id=id; this.name=name; } }
/*ArrayListGeneralStack类*/
package week111; import java.util.ArrayList; public class ArrayListGeneralStack<E> implements GeneralStack { ArrayList list=new ArrayList<E>(); public String toString() { return list.toString(); } @Override public Object push(Object item) { // TODO Auto-generated method stub if(list.add(item)) { return item; } else { return false; } } @Override public Object pop() { // TODO Auto-generated method stub if(list.size()==0) { return null; } return list.remove(list.size()-1); } @Override public Object peek() { // TODO Auto-generated method stub return list.get(list.size()-1); } @Override public boolean empty() { // TODO Auto-generated method stub if(list.size()==0) { return true; }else { return false; } } @Override public int size() { // TODO Auto-generated method stub return list.size(); } }
/*Main类*/
package week111; import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc=new Scanner(System.in); while(true) { String s=sc.next(); if(s.equals("Double")) { System.out.println("Double Test"); int count=sc.nextInt(); int pop_time=sc.nextInt(); ArrayListGeneralStack generalStack=new ArrayListGeneralStack(); for(int i=0;i<count;i++) { System.out.println("push:"+generalStack.push(sc.nextDouble())); } for(int j=0;j<pop_time;j++) { System.out.println("pop:"+generalStack.pop()); } System.out.println(generalStack.toString()); double sum=0; int size=generalStack.size(); for(int i=0;i<size;i++) { sum+=(double)generalStack.pop(); } System.out.println("sum="+sum); System.out.println("interface GeneralStack"); }else if(s.equals("Integer")) { System.out.println("Integer Test"); int count=sc.nextInt(); int pop_time=sc.nextInt(); ArrayListGeneralStack generalStack=new ArrayListGeneralStack(); for(int i=0;i<count;i++) { System.out.println("push:"+generalStack.push(sc.nextInt())); } for(int j=0;j<pop_time;j++) { System.out.println("pop:"+generalStack.pop()); } System.out.println(generalStack.toString()); int sum=0; int size=generalStack.size(); for(int i=0;i<size;i++) { sum+=(int)generalStack.pop(); } System.out.println("sum="+sum); System.out.println("interface GeneralStack"); }else if (s.equals("Car")){ System.out.println("Car Test"); int count=sc.nextInt(); int pop_time=sc.nextInt(); ArrayListGeneralStack generalStack = new ArrayListGeneralStack(); for (int i=0;i<count;i++){ int id=sc.nextInt(); String name=sc.next(); Car car = new Car(id,name); System.out.println("push:"+generalStack.push(car)); } for (int i=0;i<pop_time;i++){ System.out.println("pop:"+generalStack.pop()); } System.out.println(generalStack.toString()); if (generalStack.size()>0){ int size=generalStack.size(); for (int i=0;i<size;i++){ Car car=(Car) generalStack.pop(); System.out.println(car.getName()); } } System.out.println("interface GeneralStack"); }else if (s.equals("quit")){ break; } } } }
运行结果:
实验总结:
1 泛型的概念定义:
i.引入了参数化类型(Parameterized Type)的概念,改造了所有的Java集合,使之都实现泛型,允许程序在创建集合时就可以指定集合元素的类型,比如List<String>就表名这是一个只能存放String类型的List;
ii. 泛型(Generic):就是指参数化类型,上面的List<String>就是参数化类型,因此就是泛型,而String就是该List<String>泛型的类型参数;
3) 泛型的好处:
i. 使集合可以记住元素类型,即取出元素的时候无需进行强制类型转化了,可以直接用原类型的引用接收;
ii. 一旦指定了性参数那么集合中元素的类型就确定了,不能添加其他类型的元素,否则会直接编译保存,这就可以避免了“不小心放入其他类型元素”的可能;
2,通配符
1.)在实例化对象的时候,不确定泛型参数的具体类型时,可以使用通配符进行对象定义。
2)<? extends Object>代表上边界限定通配符
3) <? super Object>代表下边界限定通配符。
感受:
通过本周的学习,掌握了泛型类的定义,以及泛型方法的声明,还有泛型接口的定义,以及对泛型变量的限定。
在本周结对编程训练时,还是有很大问题,这样的分工合作确实效率很大程度上增加,但是由于语法掌握还不是很牢靠,仍旧需要大量适度练习,在之后的学习中,我会多练习程序去了解这些知识,争取能够独立完整的去编写程序。