• 用汉明距离进行图片相似度检测的Java实现


    根据Neal Krawetz博士的解释,原理非常简单易懂。我们可以用一个快速算法,就达到基本的效果。

    这里的关键技术叫做"感知哈希算法"(Perceptual hash algorithm),它的作用是对每张图片生成一个"指纹"(fingerprint)字符串,然后比较不同图片的指纹。结果越接近,就说明图片越相似。

    下面是一个最简单的实现:

    第一步,缩小尺寸。

    将图片缩小到8x8的尺寸,总共64个像素。这一步的作用是去除图片的细节,只保留结构、明暗等基本信息,摒弃不同尺寸、比例带来的图片差异。

    用汉明距离进行图片相似度检测的Java实现 用汉明距离进行图片相似度检测的Java实现

    第二步,简化色彩。

    将缩小后的图片,转为64级灰度。也就是说,所有像素点总共只有64种颜色。

    第三步,计算平均值。

    计算所有64个像素的灰度平均值。

    第四步,比较像素的灰度。

    将每个像素的灰度,与平均值进行比较。大于或等于平均值,记为1;小于平均值,记为0。

    第五步,计算哈希值。

    将上一步的比较结果,组合在一起,就构成了一个64位的整数,这就是这张图片的指纹。组合的次序并不重要,只要保证所有图片都采用同样次序就行了。

    用汉明距离进行图片相似度检测的Java实现 = 用汉明距离进行图片相似度检测的Java实现 = 8f373714acfcf4d0

    得到指纹以后,就可以对比不同的图片,看看64位中有多少位是不一样的。在理论上,这等同于计算"汉明距离"(Hamming distance)。如果不相同的数据位不超过5,就说明两张图片很相似;如果大于10,就说明这是两张不同的图片。

    具体的代码实现,可以参见Wote用python语言写的imgHash.py。代码很短,只有53行。使用的时候,第一个参数是基准图片,第二个参数是用来比较的其他图片所在的目录,返回结果是两张图片之间不相同的数据位数量(汉明距离)。

    这种算法的优点是简单快速,不受图片大小缩放的影响,缺点是图片的内容不能变更。如果在图片上加几个文字,它就认不出来了。所以,它的最佳用途是根据缩略图,找出原图。

    实际应用中,往往采用更强大的pHash算法和SIFT算法,它们能够识别图片的变形。只要变形程度不超过25%,它们就能匹配原图。这些算法虽然更复杂,但是原理与上面的简便算法是一样的,就是先将图片转化成Hash字符串,然后再进行比较。

    下面我们来看下上述理论用java来做一个DEMO版的具体实现:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    110
    111
    112
    113
    114
    115
    116
    117
    118
    119
    120
    121
    122
    123
    124
    125
    126
    127
    128
    129
    130
    131
    132
    133
    134
    135
    136
    137
    138
    139
    140
    141
    142
    143
    144
    145
    146
    147
    148
    149
    150
    151
    152
    153
    154
    155
    156
    157
    158
    159
    160
    161
    162
    163
    164
    165
    166
    167
    168
    169
    170
    171
    172
    173
    174
    175
    176
    177
    178
    179
    180
    181
    182
    183
    184
    185
    186
    187
    188
    189
    190
    191
    192
    193
    194
    195
    196
    197
    198
    199
    200
    201
    202
    import java.awt.Graphics2D;
    import java.awt.color.ColorSpace;
    import java.awt.image.BufferedImage;
    import java.awt.image.ColorConvertOp;
    import java.io.File;
    import java.io.FileInputStream;
    import java.io.FileNotFoundException;
    import java.io.InputStream;
     
    import javax.imageio.ImageIO;
    /*
    * pHash-like image hash.
    * Author: Elliot Shepherd (elliot@jarofworms.com
    * Based On: http://www.hackerfactor.com/blog/index.php?/archives/432-Looks-Like-It.html
    */
    public class ImagePHash {
     
       private int size = 32;
       private int smallerSize = 8;
        
       public ImagePHash() {
           initCoefficients();
       }
        
       public ImagePHash(int size, int smallerSize) {
           this.size = size;
           this.smallerSize = smallerSize;
            
           initCoefficients();
       }
        
       public int distance(String s1, String s2) {
           int counter = 0;
           for (int k = 0; k < s1.length();k++) {
               if(s1.charAt(k) != s2.charAt(k)) {
                   counter++;
               }
           }
           return counter;
       }
        
       // Returns a 'binary string' (like. 001010111011100010) which is easy to do a hamming distance on.
       public String getHash(InputStream is) throws Exception {
           BufferedImage img = ImageIO.read(is);
            
           /* 1. Reduce size.
            * Like Average Hash, pHash starts with a small image.
            * However, the image is larger than 8x8; 32x32 is a good size.
            * This is really done to simplify the DCT computation and not
            * because it is needed to reduce the high frequencies.
            */
           img = resize(img, size, size);
            
           /* 2. Reduce color.
            * The image is reduced to a grayscale just to further simplify
            * the number of computations.
            */
           img = grayscale(img);
            
           double[][] vals = new double[size][size];
            
           for (int x = 0; x < img.getWidth(); x++) {
               for (int y = 0; y < img.getHeight(); y++) {
                   vals[x][y] = getBlue(img, x, y);
               }
           }
            
           /* 3. Compute the DCT.
            * The DCT separates the image into a collection of frequencies
            * and scalars. While JPEG uses an 8x8 DCT, this algorithm uses
            * a 32x32 DCT.
            */
           long start = System.currentTimeMillis();
           double[][] dctVals = applyDCT(vals);
           System.out.println("DCT: " + (System.currentTimeMillis() - start));
            
           /* 4. Reduce the DCT.
            * This is the magic step. While the DCT is 32x32, just keep the
            * top-left 8x8. Those represent the lowest frequencies in the
            * picture.
            */
           /* 5. Compute the average value.
            * Like the Average Hash, compute the mean DCT value (using only
            * the 8x8 DCT low-frequency values and excluding the first term
            * since the DC coefficient can be significantly different from
            * the other values and will throw off the average).
            */
           double total = 0;
            
           for (int x = 0; x < smallerSize; x++) {
               for (int y = 0; y < smallerSize; y++) {
                   total += dctVals[x][y];
               }
           }
           total -= dctVals[0][0];
            
           double avg = total / (double) ((smallerSize * smallerSize) - 1);
        
           /* 6. Further reduce the DCT.
            * This is the magic step. Set the 64 hash bits to 0 or 1
            * depending on whether each of the 64 DCT values is above or
            * below the average value. The result doesn't tell us the
            * actual low frequencies; it just tells us the very-rough
            * relative scale of the frequencies to the mean. The result
            * will not vary as long as the overall structure of the image
            * remains the same; this can survive gamma and color histogram
            * adjustments without a problem.
            */
           String hash = "";
            
           for (int x = 0; x < smallerSize; x++) {
               for (int y = 0; y < smallerSize; y++) {
                   if (x != 0 && y != 0) {
                       hash += (dctVals[x][y] > avg?"1":"0");
                   }
               }
           }
            
           return hash;
       }
        
       private BufferedImage resize(BufferedImage image, int width,    int height) {
           BufferedImage resizedImage = new BufferedImage(width, height, BufferedImage.TYPE_INT_ARGB);
           Graphics2D g = resizedImage.createGraphics();
           g.drawImage(image, 00, width, height, null);
           g.dispose();
           return resizedImage;
       }
        
       private ColorConvertOp colorConvert = new ColorConvertOp(ColorSpace.getInstance(ColorSpace.CS_GRAY), null);
     
       private BufferedImage grayscale(BufferedImage img) {
           colorConvert.filter(img, img);
           return img;
       }
        
       private static int getBlue(BufferedImage img, int x, int y) {
           return (img.getRGB(x, y)) & 0xff;
       }
        
       // DCT function stolen from http://stackoverflow.com/questions/4240490/problems-with-dct-and-idct-algorithm-in-java
     
       private double[] c;
       private void initCoefficients() {
           c = new double[size];
            
           for (int i=1;i<size;i++) {
               c[i]=1;
           }
           c[0]=1/Math.sqrt(2.0);
       }
        
       private double[][] applyDCT(double[][] f) {
           int N = size;
            
           double[][] F = new double[N][N];
           for (int u=0;u<N;u++) {
             for (int v=0;v<N;v++) {
               double sum = 0.0;
               for (int i=0;i<N;i++) {
                 for (int j=0;j<N;j++) {
                   sum+=Math.cos(((2*i+1)/(2.0*N))*u*Math.PI)*Math.cos(((2*j+1)/(2.0*N))*v*Math.PI)*(f[i][j]);
                 }
               }
               sum*=((c[u]*c[v])/4.0);
               F[u][v] = sum;
             }
           }
           return F;
       }
     
       public static void main(String[] args) {
            
           ImagePHash p = new ImagePHash();
           String image1;
           String image2;
           try {
               image1 = p.getHash(new FileInputStream(new File("C:/Users/june/Desktop/1.jpg")));
               image2 = p.getHash(new FileInputStream(new File("C:/Users/june/Desktop/1.jpg")));
               System.out.println("1:1 Score is " + p.distance(image1, image2));
               image1 = p.getHash(new FileInputStream(new File("C:/Users/june/Desktop/1.jpg")));
               image2 = p.getHash(new FileInputStream(new File("C:/Users/june/Desktop/2.jpg")));
               System.out.println("1:2 Score is " + p.distance(image1, image2));
               image1 = p.getHash(new FileInputStream(new File("C:/Users/june/Desktop/1.jpg")));
               image2 = p.getHash(new FileInputStream(new File("C:/Users/june/Desktop/3.jpg")));
               System.out.println("1:3 Score is " + p.distance(image1, image2));
               image1 = p.getHash(new FileInputStream(new File("C:/Users/june/Desktop/2.jpg")));
               image2 = p.getHash(new FileInputStream(new File("C:/Users/june/Desktop/3.jpg")));
               System.out.println("2:3 Score is " + p.distance(image1, image2));
                
               image1 = p.getHash(new FileInputStream(new File("C:/Users/june/Desktop/4.jpg")));
               image2 = p.getHash(new FileInputStream(new File("C:/Users/june/Desktop/5.jpg")));
               System.out.println("4:5 Score is " + p.distance(image1, image2));
                
           catch (FileNotFoundException e) {
               e.printStackTrace();
           catch (Exception e) {
               e.printStackTrace();
           }
     
       }
    }

    运行结果为:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    DCT: 163
    DCT: 158
    1:1 Score is 0
    DCT: 168
    DCT: 164
    1:2 Score is 4
    DCT: 156
    DCT: 156
    1:3 Score is 3
    DCT: 157
    DCT: 157
    2:3 Score is 1
    DCT: 157
    DCT: 156
    4:5 Score is 21

    说明:其中1,2,3是3张非常相似的图片,图片分别加了不同的文字水印,肉眼分辨的不是太清楚,下面会有附图,4、5是两张差异很大的图,图你可以随便找来测试,这两张我就不上传了。

    结果说明:汉明距离越大表明图片差异越大,如果不相同的数据位不超过5,就说明两张图片很相似;如果大于10,就说明这是两张不同的图片。从结果可以看到1、2、3是相似图片,4、5差异太大,是两张不同的图片。

    附:图1、2、3

    图1

    图2

    图3

    参考地址:

    代码参考:http://pastebin.com/Pj9d8jt5
    原理参考:http://www.ruanyifeng.com/blog/2011/07/principle_of_similar_image_search.html
    汉明距离:http://baike.baidu.com/view/725269.htm

    来自:http://stackoverflow.com/questions/6971966/how-to-measure-percentage-similarity-between-two-images

  • 相关阅读:
    【Python编程:从入门到实践】chapter6 字典
    【Python编程:从入门到实践】chapter5 if语句
    【Linux_Unix系统编程】Chapter9 进程凭证
    【Linux_Unix系统编程】Chapter10 时间
    【Linux_Unix系统编程】Chapter8 用户和组
    【Linux_Unix系统编程】chapter7 内存分配
    【Linux_Unix系统编程】chapter6 进程
    书籍 人生
    流程图软件
    技术文章,iOS,iOS开发系列 数学函数
  • 原文地址:https://www.cnblogs.com/lixun/p/4334977.html
Copyright © 2020-2023  润新知