• ConcurrentHashMap代码解析


    ConcurrentHashMap (JDK 1.7)的继承关系如下: 

    1. ConcurrentHashMap是线程安全的hash map。ConcurrentHashMap的数据结构是一个Segment<K, V>数组:

        /**
         * The segments, each of which is a specialized hash table.
         */
        final Segment<K,V>[] segments;
    Segment数组segments的每一个元素都包含一个HashEntry<K, V>数组table,这个table类似于HashMap中的table。因此ConcurrentHashMap的存储结构其实是两层,通过两次hash来定位元素所在的链表,图示结构如下:

    其中,HashEntry的定义如下:

        /**
         * ConcurrentHashMap list entry. Note that this is never exported
         * out as a user-visible Map.Entry.
         */
        static final class HashEntry<K,V> {
            final int hash;
            final K key;
            volatile V value;
            volatile HashEntry<K,V> next;
        }
    

    因此,Segment数组的意义就是将一个大的table分割成多个小的table来进行加锁(即,锁分离技术),而每一个Segment元素存储的是HashEntry数组+链表,和HashMap的数据存储结构一样。

    2. Segment是静态static final类,

    static final class Segment<K,V> extends ReentrantLock implements Serializable {}

    他有自己的成员变量和方法:

    成员变量: 

        table: 表示每个segment的数组

        count: 表示元素个数

        modCount: 表示table被修改的次数

        threshold: 表示table需要扩容的阈值

        loadFactor: 表示table的负载因子,超过负载因子之后table会扩容

    方法:

        Segment继承了ReentrantLock类,所以他自带锁功能,在其方法中可以体现出来。

        a. put()方法

            final V put(K key, int hash, V value, boolean onlyIfAbsent) {
                HashEntry<K,V> node = tryLock() ? null :
                    scanAndLockForPut(key, hash, value);
                V oldValue;
                try {
                    HashEntry<K,V>[] tab = table;
                    int index = (tab.length - 1) & hash;
    // HashEntry<K,V> first = entryAt(tab, index); for (HashEntry<K,V> e = first;;) { if (e != null) { K k; if ((k = e.key) == key || (e.hash == hash && key.equals(k))) { oldValue = e.value; if (!onlyIfAbsent) { e.value = value; ++modCount; } break; } e = e.next; } else { if (node != null) node.setNext(first); else node = new HashEntry<K,V>(hash, key, value, first); int c = count + 1; if (c > threshold && tab.length < MAXIMUM_CAPACITY) rehash(node); else setEntryAt(tab, index, node); ++modCount; count = c; oldValue = null; break; } } } finally { unlock(); } return oldValue; }

        b. rehash()方法

            /**
             * Doubles size of table and repacks entries, also adding the
             * given node to new table
             */
            @SuppressWarnings("unchecked")
            private void rehash(HashEntry<K,V> node) {
                /*
                 * Reclassify nodes in each list to new table.  Because we
                 * are using power-of-two expansion, the elements from
                 * each bin must either stay at same index, or move with a
                 * power of two offset. We eliminate unnecessary node
                 * creation by catching cases where old nodes can be
                 * reused because their next fields won't change.
                 * Statistically, at the default threshold, only about
                 * one-sixth of them need cloning when a table
                 * doubles. The nodes they replace will be garbage
                 * collectable as soon as they are no longer referenced by
                 * any reader thread that may be in the midst of
                 * concurrently traversing table. Entry accesses use plain
                 * array indexing because they are followed by volatile
                 * table write.
                 */
                HashEntry<K,V>[] oldTable = table;
                int oldCapacity = oldTable.length;
                int newCapacity = oldCapacity << 1;
                threshold = (int)(newCapacity * loadFactor);
                HashEntry<K,V>[] newTable =
                    (HashEntry<K,V>[]) new HashEntry[newCapacity];
                int sizeMask = newCapacity - 1;
                for (int i = 0; i < oldCapacity ; i++) {
                    HashEntry<K,V> e = oldTable[i];
                    if (e != null) {
                        HashEntry<K,V> next = e.next;
                        int idx = e.hash & sizeMask;
                        if (next == null)   //  Single node on list
                            newTable[idx] = e;
                        else { // Reuse consecutive sequence at same slot
                            HashEntry<K,V> lastRun = e;
                            int lastIdx = idx;
                            for (HashEntry<K,V> last = next;
                                 last != null;
                                 last = last.next) {
                                int k = last.hash & sizeMask;
                                if (k != lastIdx) {
                                    lastIdx = k;
                                    lastRun = last;
                                }
                            }
                            newTable[lastIdx] = lastRun;
                            // Clone remaining nodes
                            for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
                                V v = p.value;
                                int h = p.hash;
                                int k = h & sizeMask;
                                HashEntry<K,V> n = newTable[k];
                                newTable[k] = new HashEntry<K,V>(h, p.key, v, n);
                            }
                        }
                    }
                }
                int nodeIndex = node.hash & sizeMask; // add the new node
                node.setNext(newTable[nodeIndex]);
                newTable[nodeIndex] = node;
                table = newTable;
            }
    

     这些都是Segment类自己的方法,不是ConcurrentHashMap()的方法。

    
    

    3. ConcurrentHashMap同样会有的自己的put() / get() / remove()等方法,是在Segment类的方法上实现的。

    ConcurrentHashMap默认构造函数为:

        /**
         * Creates a new, empty map with a default initial capacity (16),
         * load factor (0.75) and concurrencyLevel (16).
         */
        public ConcurrentHashMap() {
            this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
        }
    

    this有3个参数:

            a. DEFAULT_INITIAL_CAPACITY,表示table的默认大小

        /**
         * The default initial capacity for this table,
         * used when not otherwise specified in a constructor.
         */
        static final int DEFAULT_INITIAL_CAPACITY = 16;

            b. DEFAULT_LOAD_FACTOR,表示table的负载因子

        /**
         * The default load factor for this table, used when not
         * otherwise specified in a constructor.
         */
        static final float DEFAULT_LOAD_FACTOR = 0.75f;

            c. DEFAULT_CONCURRENCY_LEVEL,表示table默认的并发度,也就是segments数组的大小!!

        /**
         * The default concurrency level for this table, used when not
         * otherwise specified in a constructor.
         */
        static final int DEFAULT_CONCURRENCY_LEVEL = 16;
    

      

    this调用了:

        /**
         * Creates a new, empty map with the specified initial
         * capacity, load factor and concurrency level.
         *
         * @param initialCapacity the initial capacity. The implementation
         * performs internal sizing to accommodate this many elements.
         * @param loadFactor  the load factor threshold, used to control resizing.
         * Resizing may be performed when the average number of elements per
         * bin exceeds this threshold.
         * @param concurrencyLevel the estimated number of concurrently
         * updating threads. The implementation performs internal sizing
         * to try to accommodate this many threads.
         * @throws IllegalArgumentException if the initial capacity is
         * negative or the load factor or concurrencyLevel are
         * nonpositive.
         */
        @SuppressWarnings("unchecked")
        public ConcurrentHashMap(int initialCapacity,
                                 float loadFactor, int concurrencyLevel) {
            if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
                throw new IllegalArgumentException();
            if (concurrencyLevel > MAX_SEGMENTS)
                concurrencyLevel = MAX_SEGMENTS;
            // Find power-of-two sizes best matching arguments、
            // 寻找大于等于concurrencyLevel的一个整数ssize,这个整数是2的倍数,默认值应该是16
            int sshift = 0;
            int ssize = 1;
            while (ssize < concurrencyLevel) {
                ++sshift;
                ssize <<= 1;
            }
            this.segmentShift = 32 - sshift;
            this.segmentMask = ssize - 1;
            // initialCapacity的默认是是table数组的大小(默认为16)
            if (initialCapacity > MAXIMUM_CAPACITY)
                initialCapacity = MAXIMUM_CAPACITY;
            // c默认值是16 / 16 = 1
            int c = initialCapacity / ssize;
            if (c * ssize < initialCapacity)
                ++c;
            // MIN_SEGMENT_TABLE_CAPACITY表示每个segment中table的最小容量(默认为2)
            int cap = MIN_SEGMENT_TABLE_CAPACITY;
            while (cap < c)
                cap <<= 1;
            // create segments and segments[0]
            Segment<K,V> s0 = new Segment<K,V>(loadFactor, (int)(cap * loadFactor), (HashEntry<K,V>[])new HashEntry[cap]);
            Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
            UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
            this.segments = ss;
        }
    

    ConcurrentHashMap的put()方法:

        /**
         * Maps the specified key to the specified value in this table.
         * Neither the key nor the value can be null.
         *
         * <p> The value can be retrieved by calling the <tt>get</tt> method
         * with a key that is equal to the original key.
         *
         * @param key key with which the specified value is to be associated
         * @param value value to be associated with the specified key
         * @return the previous value associated with <tt>key</tt>, or
         *         <tt>null</tt> if there was no mapping for <tt>key</tt>
         * @throws NullPointerException if the specified key or value is null
         */
        @SuppressWarnings("unchecked")
        public V put(K key, V value) {
            Segment<K,V> s;
            if (value == null)
                throw new NullPointerException();
            // 此处的hash()方法是属于ConcurrentHashMap类,Segment的put()方法使用的hash方式是(table.length - 1) & hash,这个hash值是调用的ConcurrentHashMap的hash()方法产生的
            int hash = hash(key);
            // j表示segment的索引
            int j = (hash >>> segmentShift) & segmentMask;
            if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck
                 (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment
                // 获取第j个segment
                s = ensureSegment(j);
            // 这里的put()方法是Segment的方法
            return s.put(key, hash, value, false);
        }
    

     get()方法

        /**
         * Returns the value to which the specified key is mapped,
         * or {@code null} if this map contains no mapping for the key.
         *
         * <p>More formally, if this map contains a mapping from a key
         * {@code k} to a value {@code v} such that {@code key.equals(k)},
         * then this method returns {@code v}; otherwise it returns
         * {@code null}.  (There can be at most one such mapping.)
         *
         * @throws NullPointerException if the specified key is null
         */
        public V get(Object key) {
            Segment<K,V> s; // manually integrate access methods to reduce overhead
            HashEntry<K,V>[] tab;
            int h = hash(key);
            long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
            if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
                (tab = s.table) != null) {
                for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
                         (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
                     e != null; e = e.next) {
                    K k;
                    if ((k = e.key) == key || (e.hash == h && key.equals(k)))
                        return e.value;
                }
            }
            return null;
        }
    

     remove()方法

        /**
         * Removes the key (and its corresponding value) from this map.
         * This method does nothing if the key is not in the map.
         *
         * @param  key the key that needs to be removed
         * @return the previous value associated with <tt>key</tt>, or
         *         <tt>null</tt> if there was no mapping for <tt>key</tt>
         * @throws NullPointerException if the specified key is null
         */
        public V remove(Object key) {
            int hash = hash(key);
            Segment<K,V> s = segmentForHash(hash);
            return s == null ? null : s.remove(key, hash, null);
        }
    

     segmentForHash()方法,通过hash值获取相应segment

        /**
         * Get the segment for the given hash
         */
        @SuppressWarnings("unchecked")
        private Segment<K,V> segmentForHash(int h) {
            long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
            return (Segment<K,V>) UNSAFE.getObjectVolatile(segments, u);
        }
    

      

      

  • 相关阅读:
    递归函数
    python学习笔记
    套接字学习笔记
    Tomcat学习笔记3
    Tomcat学习笔记2
    《Python学习手册 第五版》 -第29章 类代码编写细节
    《Python学习手册 第五版》 -第28章 一个更加实际的示例
    《Python学习手册 第五版》 -第27章 类代码编写基础
    《Python学习手册 第五版》 -第26章 OOP:宏伟蓝图
    《Python学习手册 第五版》 -第25章 高级模块话题
  • 原文地址:https://www.cnblogs.com/lixiaolun/p/8809328.html
Copyright © 2020-2023  润新知