tensorflow项目的github地址:
https://github.com/teafternoon/tensorflow-using
tensorflow学习
安装tensorflow:
作者使用的是python3,安装命令pip3 install tensorflow,这个时cpu版本的,如果要安装gpu版本的使用命令pip3 install tensorflow-gpu
安装GPU版tensorflow需要先安装cuda sdk
cuda sdk下载官网:https://www.nvidia.cn/object/cuda_get_cn_old.html
第一小节:MNIST
MNIST是一个入门级的计算机视觉数据集,它包含了各种手写数字图片。
基于此,我们训练一个机器学习模型用于识别图片里面的数字。该识别基于Softmax Regression
mnist数据集下载地址:http://yann.lecun.com/exdb/mnist/
demo1:
1 #!/usr/bin/python3 2 # -*- coding: utf-8 -*- 3 4 from tensorflow.examples.tutorials.mnist import input_data 5 6 mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) 7 8 import tensorflow as tf 9 10 x = tf.placeholder("float", [None, 784]) 11 12 W = tf.Variable(tf.zeros([784, 10])) 13 b = tf.Variable(tf.zeros([10])) 14 15 y = tf.nn.softmax(tf.matmul(x, W) + b) 16 17 y_ = tf.placeholder("float", [None, 10]) 18 19 cross_entropy = -tf.reduce_sum(y_ * tf.log(y)) 20 21 train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy) 22 23 init = tf.initialize_all_variables() 24 25 sess = tf.Session() 26 sess.run(init) 27 28 for i in range(1000): 29 batch_xs, batch_ys = mnist.train.next_batch(100) 30 sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys}) 31 32 correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) 33 34 accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) 35 36 print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
demo2:
1 #!/usr/bin/python3 2 # -*- coding: utf-8 -*- 3 4 from tensorflow.examples.tutorials.mnist import input_data 5 6 mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) 7 8 import tensorflow as tf 9 10 sess = tf.InteractiveSession() 11 12 x = tf.placeholder("float", shape=[None, 784]) 13 y_ = tf.placeholder("float", shape=[None, 10]) 14 15 W = tf.Variable(tf.zeros([784, 10])) 16 b = tf.Variable(tf.zeros([10])) 17 18 sess.run(tf.initialize_all_variables()) 19 20 y = tf.nn.softmax(tf.matmul(x, W) + b) 21 22 cross_entropy = -tf.reduce_sum(y_ * tf.log(y)) 23 24 train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy) 25 26 for i in range(1000): 27 batch = mnist.train.next_batch(50) 28 train_step.run(feed_dict={x: batch[0], y_: batch[1]}) 29 30 correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1)) 31 32 accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) 33 34 print(accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels})) 35 36 def weight_variable(shape): 37 initial = tf.truncated_normal(shape, stddev=0.1) 38 return tf.Variable(initial) 39 40 def bias_variable(shape): 41 initial = tf.constant(0.1, shape=shape) 42 return tf.Variable(initial) 43 44 def conv2d(x, W): 45 return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') 46 47 def max_pool_2x2(x): 48 return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], 49 strides=[1, 2, 2, 1], padding='SAME') 50 51 W_conv1 = weight_variable([5, 5, 1, 32]) 52 b_conv1 = bias_variable([32]) 53 54 x_image = tf.reshape(x, [-1,28,28,1]) 55 56 h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) 57 h_pool1 = max_pool_2x2(h_conv1) 58 59 W_conv2 = weight_variable([5, 5, 32, 64]) 60 b_conv2 = bias_variable([64]) 61 62 h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) 63 h_pool2 = max_pool_2x2(h_conv2) 64 65 W_fc1 = weight_variable([7 * 7 * 64, 1024]) 66 b_fc1 = bias_variable([1024]) 67 68 h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) 69 h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) 70 71 keep_prob = tf.placeholder("float") 72 h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) 73 74 W_fc2 = weight_variable([1024, 10]) 75 b_fc2 = bias_variable([10]) 76 77 y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) 78 79 cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv)) 80 train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) 81 correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1)) 82 accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) 83 sess.run(tf.initialize_all_variables()) 84 for i in range(20000): 85 batch = mnist.train.next_batch(50) 86 if i%100 == 0: 87 train_accuracy = accuracy.eval(feed_dict={ 88 x:batch[0], y_: batch[1], keep_prob: 1.0}) 89 print("step %d, training accuracy %g"%(i, train_accuracy)) 90 train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) 91 92 print("test accuracy %g"%accuracy.eval(feed_dict={ 93 x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
第二小节:tensorboard
安装tensorflow的时候会一并安装,可以通过pip3 freeze查看已经安装了的tensorflow相关的库
tensor开头的有:tensorflow,tensorboard,tensorflow-estimator这三个
tensorboard是一款tensorflow的可视化工具,可以用来展现 TensorFlow 图,绘制图像生成的定量指标图以及显示附加数据(如其中传递的图像)
demo1:
1 #!/usr/bin/python3 2 # -*- coding: utf-8 -*- 3 4 import tensorflow as tf 5 6 a = tf.constant([1.0, 2.0, 3.0], name='input1') 7 b = tf.Variable(tf.random_uniform([3]), name='input2') 8 add = tf.add_n([a, b], name='addOP') 9 10 with tf.Session() as sess: 11 sess.run(tf.global_variables_initializer()) 12 writer = tf.summary.FileWriter('./', sess.graph) 13 print(sess.run(add)) 14 writer.close()
To Be Continue......