• 维护序列


    题目描述

    思路

    借鉴

    代码

    #include <cstdio>
    #define lc k<<1
    #define rc k<<1|1
    
    using namespace std;
    
    int n, m, w;
    long long sum[100005 << 2], at[100005];
    long long add[100005 << 2], mul[100005 << 2];
    inline int read() {
    	int s = 0;
    	char ch = getchar();
    	while (ch < '0' || ch > '9') ch = getchar();
    	while (ch >= '0' && ch <= '9') s = s * 10 + ch - '0', ch = getchar();
    	return s;
    }
    void build(int k, int l, int r) {
    	add[k] = 0, mul[k] = 1;
    	if (l == r) {
    		sum[k] = at[l] % m;
    		return;
    	}
    	int mid = l + r >> 1;
    	build(lc, l, mid);
    	build(rc, mid + 1, r);
    	sum[k] = (sum[lc] + sum[rc]) % m;
    }
    
    void pushdown(int k, int l, int r) {
    	if (mul[k] != 1) {
    		mul[lc] = (mul[lc] * mul[k]) % m;
    		add[lc] = (add[lc] * mul[k]) % m;
    		sum[lc] = (sum[lc] * mul[k]) % m;
    		
    		mul[rc] = (mul[rc] * mul[k]) % m;
    		add[rc] = (add[rc] * mul[k]) % m;
    		sum[rc] = (sum[rc] * mul[k]) % m;
    		
    		mul[k] = 1;
    	}
    	int mid = l + r >> 1;
    	if (add[k] != 0) {
    		add[lc] = (add[lc] + add[k]) % m;
    		sum[lc] = (sum[lc] + (mid - l + 1) * add[k]) % m;
    		
    		add[rc] = (add[rc] + add[k]) % m;
    		sum[rc] = (sum[rc] + (r - mid) * add[k]) % m;
    		
    		add[k] = 0;
    	}
    }
    
    void upmul(int k, int l, int r, int x, int y, int z) {
    	if (x <= l && r <= y) {
    		sum[k] = (sum[k] * z) % m;
    		mul[k] = (mul[k] * z) % m;
    		add[k] = (add[k] * z) % m;
    		return;
    	}
    	pushdown(k, l, r);
    	int mid = l + r >> 1;
    	if (x <= mid) upmul(lc, l, mid, x, y, z);
    	if (y > mid) upmul(rc, mid + 1, r, x, y, z);
    	sum[k] = (sum[lc] + sum[rc]) % m;
    }
    
    void upadd(int k, int l, int r, int x, int y, int z) {
    	if (x <= l && r <= y) {
    		sum[k] = (sum[k] + (r - l + 1) * z) % m;
    		add[k] = (add[k] + z) % m;
    		return;
    	}
    	pushdown(k, l, r);
    	int mid = l + r >> 1;
    	if (x <= mid) upadd(lc, l, mid, x, y, z);
    	if (y > mid) upadd(rc, mid + 1, r, x, y, z);
    	sum[k] = (sum[lc] + sum[rc]) % m;
    }
    
    long long query(int k, int l, int r, int x, int y) {
    	if (x <= l && r <= y) return sum[k] % m;
    	int mid = l + r >> 1, res = 0;
    	pushdown(k, l, r);
    	if (x <= mid) res = query(lc, l, mid, x, y) % m;
    	if (y > mid) res = (res + query(rc, mid + 1, r, x, y)) % m;
    	return res % m;
    }
    int main() {
    	n = read(), m = read();
    	for (int i = 1; i <= n; ++i) at[i] = read();
    	build(1, 1, n);
    	w = read();
    	for (int i = 1, a, b, c, d, e; i <= w; ++i) {
    		a = read();
    		if (a == 1 || a == 2) {
    			b = read(), c = read(), d = read();
    			if (a == 1) upmul(1, 1, n, b, c, d % m);
    			else upadd(1, 1, n, b, c, d % m);
    		} else {
    			b = read(), c = read();
    			printf("%lld
    ", query(1, 1, n, b, c));
    		}
    	}
    	return 0;
    }
    

    这是用queue保存的tag,容易超时

    #include <cstdio>
    #include <cmath>
    #include <queue>
    #include <algorithm>
    using namespace std;
    
    int n, m, w;
    int arr[100005 << 2], at[100005];
    queue<pair<int, int> > q[100005 << 2];
    inline int read() {
        int s = 0;
        char ch = getchar();
        while (ch < '0' || ch > '9') ch = getchar();
        while (ch >= '0' && ch <= '9') s = s * 10 + ch - '0', ch = getchar();
        return s;
    }
    inline void build(int k, int l, int r) {
        if (l == r) {
            arr[k] = at[l];
            return;
        }
        int mid = l + r >> 1;
        build(k << 1, l, mid);
        build(k << 1 | 1, mid + 1, r);
        arr[k] = (0LL + arr[k << 1] + arr[k << 1 | 1]) % m;
    }
    
    inline void trans(int k, int l, int r, pair<int, int> p) {
        q[k].push(p);
        if (p.first == 1)
            arr[k] = 1LL * arr[k] * p.second % m;
        else
            arr[k] = (0LL + arr[k] + (r - l + 1) * p.second) % m;
    }
    inline void pushdown(int k, int l, int r) {
        int L = k << 1, R = k << 1 | 1, mid = l + r >> 1;
        while (!q[k].empty()) {
            trans(L, l, mid, q[k].front());
            trans(R, mid + 1, r, q[k].front());
            q[k].pop();
        }
    }
    inline void change(int k, int l, int r, int x, int y, int p, int q) {
        if (x <= l && r <= y) {
            trans(k, l, r, make_pair(p, q));
            return;
        }
        pushdown(k, l, r);
        int mid = l + r >> 1;
        if (x <= mid)
            change(k << 1, l, mid, x, y, p, q);
        if (y > mid)
            change(k << 1 | 1, mid + 1, r, x, y, p, q);
        arr[k] = (0LL + arr[k << 1] + arr[k << 1 | 1]) % m;
    }
    inline int query(int k, int l, int r, int x, int y) {
        if (x <= l && r <= y)
            return arr[k];
        int mid = l + r >> 1;
        int res = 0;
        pushdown(k, l, r);
        if (x <= mid)
            res = query(k << 1, l, mid, x, y);
        if (y > mid)
            res = (0LL + res + query(k << 1 | 1, mid + 1, r, x, y)) % m;
        return res;
    }
    int main() {
        n = read(), m = read();
        for (int i = 1; i <= n; ++i) at[i] = read();
        build(1, 1, n);
        w = read();
        for (int i = 1, a, b, c, d, e; i <= w; ++i) {
            a = read();
            if (a == 1 || a == 2) {
                b = read(), c = read(), d = read();
                if (a == 1)
                    change(1, 1, n, b, c, 1, d);
                else
                    change(1, 1, n, b, c, 2, d);
            } else {
                b = read(), c = read();
                printf("%d
    ", query(1, 1, n, b, c));
            }
        }
        return 0;
    }
    
  • 相关阅读:
    JVM系列一:虚拟机内存区域
    【转载】 mybatis入门系列四之动态SQL
    mybatis入门系列三之类型转换器
    mybatis入门系列二之输入与输出参数
    mybatis入门系列一之创建mybatis程序
    SpringBoot基础系列一
    如何阅读W3C标准.md
    wget下载豆瓣图片失败
    js中调用worker工程化结构
    linux下fastboot工具使用异常
  • 原文地址:https://www.cnblogs.com/liuzz-20180701/p/11497893.html
Copyright © 2020-2023  润新知