xavier
xavier初始化出自论文Understanding the difficulty of training deep feedforward neural network,论文讨论的是全连接神经网络,fan_in指第i层神经元个数,fan_out指第i+1层神经元个数,但是我们的卷积神经网路是局部连接的,此时的fan_in,fan_out是什么意思呢。
在pytorch中,fan_in指kernel_height x kernel_width x in_channel. fan_out指kernel_height x kernel_width x out_channel,从局部连接的过程来看似乎并不十分合理,卷积神经网络的局部连接在感受野内仍然是全连接。fan_in=kh x kw x in_channel没什么疑问,但是fan_out应该等于out_channel更合理啊。待解答。
code,来自pytorch实现
def _calculate_fan_in_and_fan_out(tensor):
dimensions = tensor.ndimension()
if dimensions < 2:
raise ValueError("Fan in and fan out can not be computed for tensor with fewer than 2 dimensions")
if dimensions == 2: # Linear
fan_in = tensor.size(1)
fan_out = tensor.size(0)
else:
num_input_fmaps = tensor.size(1)
num_output_fmaps = tensor.size(0)
receptive_field_size = 1
if tensor.dim() > 2:
receptive_field_size = tensor[0][0].numel()
fan_in = num_input_fmaps * receptive_field_size
fan_out = num_output_fmaps * receptive_field_size
return fan_in, fan_out