http://lightoj.com/volume_showproblem.php?problem=1049
题意是,在一副有向图中,要使得它变成一个首尾相连的图,需要的最小代价。
就是本来是1-->2 2-->3 1--->3的,变成1-->2-->3--->1的话,需要把1-->3变成3--->1,就要耗费这条边的代价
思路就是找出一个入度为2的点,要么往上走,要么往下走,dfs两次。
或者记录一个总和,dfs一次就好,上一次没耗费的,正是向下走要耗费的
#include <cstdio> #include <cstdlib> #include <cstring> #include <cmath> #include <algorithm> #include <assert.h> #define IOS ios::sync_with_stdio(false) using namespace std; #define inf (0x3f3f3f3f) typedef long long int LL; #include <iostream> #include <sstream> #include <vector> #include <set> #include <map> #include <queue> #include <string> #include <bitset> const int maxn = 100 + 20; struct node { int u, v, w, tonext; bool flag; } e[maxn * 2]; int first[maxn]; int num; int in[maxn]; int DFN; void add(int u, int v, int w, bool flag) { ++num; e[num].u = u; e[num].v = v; e[num].w = w; e[num].tonext = first[u]; first[u] = num; e[num].flag = flag; } int now; int dfs(int cur, int root, int fa) { if (cur == root && now == 0) return 0; if (cur == root) { for (int i = first[cur]; i; i = e[i].tonext) { now--; if (now == 0) { return e[i].w + dfs(e[i].v, root, cur); } } } else { for (int i = first[cur]; i; i = e[i].tonext) { int v = e[i].v; if (v == fa) continue; if (e[i].flag) { return dfs(v, root, cur); } else { return e[i].w + dfs(v, root, cur); } } } } void work() { num = 0; ++DFN; int n; scanf("%d", &n); int root = -inf; for (int i = 1; i <= n; ++i) { int u, v, w; scanf("%d%d%d", &u, &v, &w); if (in[v] == DFN) { root = v; } in[v] = DFN; add(u, v, w, true); add(v, u, w, false); } int ans = inf; if (root == -inf) { ans = 0; } else { now = 1; ans = dfs(root, root, 0); now = 2; ans = min(ans, dfs(root, root, 0)); } static int f = 0; printf("Case %d: %d ", ++f, ans); } int main() { #ifdef local freopen("data.txt", "r", stdin); // freopen("data.txt", "w", stdout); #endif int t; scanf("%d", &t); while (t--) work(); return 0; }