• Polynomial Division 数学题


    https://www.hackerrank.com/contests/101hack45/challenges/polynomial-division

    询问一个多项式能否整除一个一次函数。a * x + b

    注意到如果能整除,就比如是x^2 + 2 * x + 1能整除2 * x + 2

    那么它必定能整除2 * x + 2的根,也就是和根肯定有交点。

    因为你能整除,也就是(x^2 + 2 * x + 1) = k * (2 * x + 2)

    那么k * (2 * x + 2)还是条直线。唯独使得2 * x + 2 = 0那个点是不会变的。

    然后就是bit维护了。相当于询问[L, R]中,这一段的和,

    注意特判一下b = 0,有点不同。

    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <cmath>
    #include <algorithm>
    #include <assert.h>
    #define IOS ios::sync_with_stdio(false)
    using namespace std;
    #define inf (0x3f3f3f3f)
    typedef long long int LL;
    
    
    #include <iostream>
    #include <sstream>
    #include <vector>
    #include <set>
    #include <map>
    #include <queue>
    #include <string>
    #include <bitset>
    const int MOD = 1e9 + 7;
    const int maxn = 1e5 + 20;
    LL powx[maxn];
    LL quick_pow(LL a, LL b, int MOD) {
        LL ans = 1;
        LL base = a;
        while (b > 0) {
            if (b & 1) {
                ans *= base;
                if (ans >= MOD) ans %= MOD;
            }
            b >>= 1;
            base *= base;
            if (base >= MOD) base %= MOD;
        }
        return ans;
    }
    LL c[maxn];
    int n, a, b, q;
    int lowbit(int x) {
        return x & (-x);
    }
    void upDate(int pos, LL val) {
        while (pos <= n) {
            c[pos] += val;
            pos += lowbit(pos);
            if (c[pos] >= MOD) c[pos] %= MOD;
        }
    }
    LL get_sum(int pos) {
        LL ans = 0;
        while (pos) {
            ans += c[pos];
            pos -= lowbit(pos);
            if (ans >= MOD) ans %= MOD;
        }
        return ans;
    }
    LL arr[maxn];
    void work() {
    //    cout << quick_pow(2, 4, MOD) << endl;
        scanf("%d%d%d%d", &n, &a, &b, &q);
        powx[0] = 1;
        powx[1] = -b * quick_pow(a, MOD - 2, MOD) % MOD;
        for (int i = 2; i <= n; ++i) {
            powx[i] = powx[i - 1] * powx[1] % MOD;
        }
        for (int i = 1; i <= n; ++i) {
            LL x;
            scanf("%lld", &x);
            arr[i] = x;
            upDate(i, x * powx[i - 1] % MOD);
        }
        if (b == 0) {
            while (q--) {
                int flag;
                scanf("%d", &flag);
                if (flag == 1) {
                    int pos, val;
                    scanf("%d%d", &pos, &val);
                    ++pos;
                    arr[pos] = val;
                } else {
                    int L, R;
                    scanf("%d%d", &L, &R);
                    L++;
                    R++;
                    if (arr[L] == 0) {
                        printf("Yes
    ");
                    } else printf("No
    ");
                }
            }
            return;
        }
        while (q--) {
            int flag;
            scanf("%d", &flag);
            if (flag == 1) {
                int pos;
                LL val;
                scanf("%d%lld", &pos, &val);
                pos++;
                LL now = (get_sum(pos) + MOD - get_sum(pos - 1)) % MOD;
                upDate(pos, -now);
                upDate(pos, val * powx[pos - 1] % MOD);
            } else {
                int L, R;
                scanf("%d%d", &L, &R);
                L++;
                R++;
                LL now = (get_sum(R) - get_sum(L - 1) + MOD) % MOD;
                if (now == 0) {
                    printf("Yes
    ");
                } else printf("No
    ");
            }
        }
    }
    
    int main() {
    #ifdef local
        freopen("data.txt", "r", stdin);
    //    freopen("data.txt", "w", stdout);
    #endif
        work();
        return 0;
    }
    View Code
  • 相关阅读:
    Docker容器彻底删除所有容器、删除所有镜像、删除所有卷、删除所有网络
    Fabric区块链浏览器启动报错Error : [ 'Explorer is closing due to channel name [%s] is already exist in DB'...]
    查看docker里面的Postgres数据库里面的信息
    将本地镜像推送到指定docker服务器
    linux 下 配置C++ 开发环境
    Go 发送邮件
    Ubuntu下使用nginx发布vue项目
    C++多线程之条件变量
    C/C++ 递归
    STL容器概述
  • 原文地址:https://www.cnblogs.com/liuweimingcprogram/p/6348987.html
Copyright © 2020-2023  润新知