数学分析的微分学习题中,经常出现类似中值定理的证明题,但往往难于构造合适的辅助函数.有时候运用插值法可使题目思路清晰、证明过程简洁,以下举三例说明插值思想在微分学证明题中的巧妙之处.
$Problem 1.$
[$12^{mbox{th}}$ IMC, 2d, 4] Prove that if $f:mathbb{R}
ightarrowmathbb{R}$ is three times differentiable, then there exists a real number $xiin(-1,1)$ such that
[
frac{f'''(xi)}{6}=frac{f(1)-f(-1)}{2}-f'(0).
]
$Proof.$ 设$p_3(x)=a_0+a_1x+a_2x^2+a_3x^3$为满足条件$p_3(-1)=f(-1),p_3(0)=f(0),p_3(1)=f(1),p_3'(0)=f'(0)$的3次插值多项式,则$p_3(x)$的系数$(a_0,a_1,a_2,a_3)$是方程
egin{align}label{eq1}
left(
egin{array}{cccc}
1 & -1 & 1 & -1 \
1 & 0 & 0 & 0 \
1 & 1 & 1 & 1 \
0 & 1 & 0 & 0 \
end{array}
ight)left(
egin{array}{c}
a_0 \
a_1 \
a_2 \
a_3 \
end{array}
ight)=left(
egin{array}{c}
f(-1) \
f(0) \
f(1) \
f'(0) \
end{array}
ight)
end{align}
的解. 直接计算可得
[
a_3=frac{f(1)-f(-1)}{2}-f'(0)
]
作辅助函数$R(x)=f(x)-p_3(x)$,则$R(x)=0$在$[-1,1]$上有4个实根:$-1,0,0,1$,反复运用Rolle定理可知,存在$xiin(-1,1)$使得
$R'''(xi)=0$,即
[
frac{f'''(xi)}{6}=a_3=frac{f(1)-f(-1)}{2}-f'(0).
]
$Problem 2.$ 设$f$在$[a,b]$上三阶可微,证明:存在$xiin(a,b)$使成立
egin{align}label{eq2}
f(b)=f(a)+frac{1}{2}(b-a)[f'(a)+f'(b)]-frac{1}{12}(b-a)^3f'''(xi)
end{align}
$Proof.$ 以$a,b$为节点作$f$的三次Hermite插值多项式$H_3(x)=a_0+a_1x+a_2x^2+a_3x^3$,即$H_3(x)$的系数满足
$H_3(a)=f(a),H_3(b)=f(b),H_3'(a)=f'(a),H_3'(b)=f'(b)$.直接计算可解得
egin{align}label{eq3}
a_3=frac{(b-a)[f'(a)+f'(b)]+2[f(a)-f(b)]}{(b-a)^3}
end{align}
令$R(x)=f(x)-H_3(x)$,反复运用Rolle定理可知,存在$xiin(a,b)$,使得$R'''(xi)=0$,即$f'''(xi)=H_3'''(xi)=6a_3$,
代入$a_3$的值即得eqref{eq2}.
$Problem 3.$ 设$f:[0,1]
ightarrowmathbb{R}$连续可微,且满足$int_0^1f(x)dx=0$.证明:
egin{align}label{eq4}
left|int_0^{alpha}f(x)dx
ight|leqslantfrac{1}{8}maxlimits_{0leqslant xleqslant 1}left|f'(x)
ight|,forall alphain(0,1).
end{align}
$Proof.$ 令$F(x)=int_0^xf(t)dt$,则$F'(x)=f(x)$.设$F(x)$通过点$0,alpha,1$的插值多项式为$p_2(x)=a_0+a_1x+a_2x^2$,则由
$p_2(0)=F(0)=0,p_2(alpha)=F(alpha),p_2(1)=F(1)=0$解得$a_2=frac{F(alpha)}{alpha(alpha-1)}$.
做辅助函数$R(x)=F(x)-p_2(x)$,注意到$R(0)=R(alpha)=R(1)=0$,反复运用Rolle定理可知,存在$xiin(0,1)$使成立$R''(xi)=0$.于是有
egin{align}label{eq5}
left|F(alpha)
ight|=frac{alpha(1-alpha)}{2}left|F''(xi)
ight|
leqslant frac{1}{8}maxlimits_{0leqslant xleqslant 1}left|F''(x)
ight|
end{align}
此即eqref{eq4}.