• MapReduce(二)常用三大组件


    mapreduce三大组件:CombinerSortPartitioner

     默认组件:排序,分区(不设置,系统有默认值)

    一、mapreduce中的Combiner

        1、什么是combiner

    Combiner 是 MapReduce 程序中 Mapper 和 Reducer 之外的一种组件,它的作用是在 maptask 之后给 maptask 的结果进行局部汇总,以减轻 reducetask 的计算负载,减少网络传输
        2、如何使用combiner

      Combiner 和 Reducer 一样,编写一个类,然后继承 Reducer, reduce 方法中写具体的 Combiner 逻辑,然后在 job 中设置 Combiner 类: job.setCombinerClass(FlowSumCombine.class)

    (如果combiner和reduce逻辑一样,就不用写combiner类了,直接在job设置信息)

       3、使用combiner注意事项  

    (1) Combiner 和 Reducer 的区别在于运行的位置:

          Combiner 是在每一个 maptask 所在的节点运行
          Reducer 是接收全局所有 Mapper 的输出结果
    (2) Combiner 的输出 kv 应该跟 reducer 的输入 kv 类型要对应起来
    (3) Combiner 的使用要非常谨慎,因为 Combiner 在 MapReduce 过程中可能调用也可能不调 用,可能调一次也可能调多次,所以: Combiner 使用的原则是:有或没有都不能影响业务 逻辑,都不能影响最终结果(求平均值时,combiner和reduce逻辑不一样)
    二、mapreduce中的序列化

         1、概述

    Java 的序列化是一个重量级序列化框架( Serializable),一个对象被序列化后,会附带很多额 外的信息(各种校验信息, header,继承体系等),不便于在网络中高效传输;所以, hadoop 自己开发了一套序列化机制( Writable),精简,高效
    Hadoop 中的序列化框架已经对基本类型和 null 提供了序列化的实现了。分别是:

        2、Java序列化

    以案例说明为例:

         3、自定义对象实现mapreduce框架的序列化

    如果需要将自定义的 bean 放在 key 中传输,则还需要实现 Comparable 接口,因为 mapreduce框中的 shuffle 过程一定会对 key 进行排序,此时,自定义的 bean 实现的接口应该是:
    public class FlowBean implements WritableComparable<FlowBean>
    以案例为例说明
    下面是进行了序列化的 FlowBean 类:

    案例:

    1、

    package com.ghgj.mr.exerciseflow;
    
    import java.io.DataInput;
    import java.io.DataOutput;
    import java.io.IOException;
    
    import org.apache.hadoop.io.WritableComparable;
    
    public class Flow implements WritableComparable<Flow>{
    
    	private String phone;
    	private long upflow;	// 上行流量
    	private long downflow;	// 下行流量
    	private long sumflow;	// 上行和下行流量之和
    	public long getUpflow() {
    		return upflow;
    	}
    	public void setUpflow(long upflow) {
    		this.upflow = upflow;
    	}
    	public long getDownflow() {
    		return downflow;
    	}
    	public void setDownflow(long downflow) {
    		this.downflow = downflow;
    	}
    	public long getSumflow() {
    		return sumflow;
    	}
    	public void setSumflow(long sumflow) {
    		this.sumflow = sumflow;
    	}
    	public String getPhone() {
    		return phone;
    	}
    	public void setPhone(String phone) {
    		this.phone = phone;
    	}
    	public Flow() {
    	}
    	public Flow(long upflow, long downflow, String phone) {
    		super();
    		this.upflow = upflow;
    		this.downflow = downflow;
    		this.sumflow = upflow + downflow;
    		this.phone = phone;
    	}
    	@Override
    	public String toString() {
    		return phone +"	" + upflow +"	" + downflow +"	" + sumflow;
    	}
    	@Override
    	public void write(DataOutput out) throws IOException {
    		// TODO Auto-generated method stub
    		out.writeLong(upflow);
    		out.writeLong(downflow);
    		out.writeLong(sumflow);
    		out.writeUTF(phone);
    	}
    	@Override
    	public void readFields(DataInput in) throws IOException {
    		// TODO Auto-generated method stub
    		this.upflow = in.readLong();
    		this.downflow = in.readLong();
    		this.sumflow = in.readLong();
    		this.phone = in.readUTF();
    	}
    	@Override
    	public int compareTo(Flow flow) {
    		if((flow.getSumflow() - this.sumflow) == 0){
    			return this.phone.compareTo(flow.getPhone());
    		}else{
    			return (int)(flow.getSumflow() - this.sumflow);
    		}
    	}
    }
    

     

    package com.ghgj.mr.exerciseflow;
    
    import java.io.IOException;
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    
    /**
     * 手机号	上行流量	下行流量	总流量
     * @author Administrator
     *
     */
    public class FlowExercise1 {
    
    	public static void main(String[] args) throws Exception {
    		
    		Configuration conf = new Configuration();
    		Job job = Job.getInstance(conf);
    		
    		job.setJarByClass(FlowExercise1.class);
    		
    		job.setMapperClass(FlowExercise1Mapper.class);
    		job.setReducerClass(FlowExercise1Reducer.class);
    		
    		job.setMapOutputKeyClass(Text.class);
    		job.setMapOutputValueClass(Flow.class);
    		
    		job.setOutputKeyClass(Text.class);
    		job.setOutputValueClass(Text.class);
    		
    		FileInputFormat.setInputPaths(job, "d:/flow/input");
    		FileOutputFormat.setOutputPath(job, new Path("d:/flow/output13"));
    		
    		boolean status = job.waitForCompletion(true);
    		System.exit(status? 0 : 1);
    	}
    	
    	static class FlowExercise1Mapper extends Mapper<LongWritable, Text, Text, Flow>{
    		@Override
    		protected void map(LongWritable key, Text value,Context context)
    				throws IOException, InterruptedException {
    			String[] splits = value.toString().split("	");
    			
    			String phone = splits[1];
    			long upflow = Long.parseLong(splits[8]);
    			long downflow = Long.parseLong(splits[9]);
    			
    			Flow flow = new Flow(upflow, downflow);
    			context.write(new Text(phone), flow);
    		}
    	}
    
    	static class FlowExercise1Reducer extends Reducer<Text, Flow, Text, Flow>{
    		@Override
    		protected void reduce(Text phone, Iterable<Flow> flows, Context context)
    				throws IOException, InterruptedException {
    			
    			long sumUpflow = 0;    // 该phone用户的总上行流量
    			long sumDownflow = 0;  
    			for(Flow f : flows){
    				sumUpflow += f.getUpflow();
    				sumDownflow += f.getDownflow();
    			}
    			Flow sumFlow = new Flow(sumUpflow, sumDownflow);
    			context.write(phone, sumFlow);
    			
    //			String v = sumUpflow +"	" + sumDownflow +"	" + (sumUpflow + sumDownflow);
    //			context.write(phone, new Text(v));
    		}
    	}
    }
    

      2、

    package com.ghgj.mr.exerciseflow;
    
    import java.io.IOException;
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.NullWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    
    public class FlowExercise2Sort {
    	
    	public static void main(String[] args) throws Exception {
    		
    		Configuration conf = new Configuration();
    		Job job = Job.getInstance(conf);
    		
    		job.setJarByClass(FlowExercise2Sort.class);
    		
    		job.setMapperClass(FlowExercise2SortMapper.class);
    		job.setReducerClass(FlowExercise2SortReducer.class);
    		
    		job.setMapOutputKeyClass(Flow.class);
    		job.setMapOutputValueClass(Text.class);
    		
    //		job.setCombinerClass(FlowExercise1Combiner.class);
    //		job.setCombinerClass(FlowExercise1Reducer.class);
    		
    		job.setOutputKeyClass(NullWritable.class);
    		job.setOutputValueClass(Flow.class);
    		
    		FileInputFormat.setInputPaths(job, "d:/flow/output1");
    		FileOutputFormat.setOutputPath(job, new Path("d:/flow/sortoutput6"));
    		
    		boolean status = job.waitForCompletion(true);
    		System.exit(status? 0 : 1);
    	}
    	
    	static class FlowExercise2SortMapper extends Mapper<LongWritable, Text, Flow, Text>{
    		@Override
    		protected void map(LongWritable key, Text value,
    				Mapper<LongWritable, Text, Flow, Text>.Context context)
    				throws IOException, InterruptedException {
    			
    			String[] splits = value.toString().split("	");
    			
    			String phone = splits[0];
    			long upflow = Long.parseLong(splits[1]);
    			long downflow = Long.parseLong(splits[2]);
    //			long sumflow = Long.parseLong(splits[3]);
    			Flow flow = new Flow(upflow, downflow, phone);
    			
    			context.write(flow, new Text(phone));
    		}
    	}
    	
    	static class FlowExercise2SortReducer extends Reducer<Flow, Text, NullWritable, Flow>{
    		@Override
    		protected void reduce(Flow flow, Iterable<Text> phones, Context context)
    				throws IOException, InterruptedException {
    			
    			for(Text t : phones){
    				context.write(NullWritable.get(), flow);
    			}
    		}
    	}
    }
    

      三、mapreduce中的sort

    需求: 把上例求得的流量综合从大到小倒序排
    基本思路:实现自定义的 bean 来封装流量信息,并将 bean 作为 map 输出的 key 来传输 MR 程序在处理数据的过程中会对数据排序(map 输出的 kv 对传输到 reduce 之前,会排序), 排序的依据是 map 输出的 key, 所以,我们如果要实现自己需要的排序规则,则可以考虑将
    排序因素放到 key 中,让 key 实现接口: WritableComparable, 然后重写 key 的 compareTo 方法
    (上面第二题)

         四、mapreduce中的partitioner

    需求: 根据归属地输出流量统计数据结果到不同文件,以便于在查询统计结果时可以定位到 省级范围进行
    思路:MapReduce 中会将 map 输出的 kv 对,按照相同 key 分组,然后分发给不同的 reducetask
    默认的分发规则为:根据 key 的 hashcode%reducetask 数来分发, 所以:如果要按照我们自 己的需求进行分组,则需要改写数据分发(分组)组件 Partitioner
    自定义一个 CustomPartitioner 继承抽象类: Partitioner
    然后在 job 对象中,设置自定义 partitioner: job.setPartitionerClass(ProvincePartitioner.class)

    (上面第三题)

     

  • 相关阅读:
    将ObservableCollection(Of T) 数据 绑定到 Canvas
    StylusNodeJS下构建更富表现力/动态/健壮的CSS
    string引用类型
    c#之预处理器指令
    c#继承与构造函数
    c#构造函数
    c#之扩展方法
    c#之结构
    继承与重写
    dedict: 很有新意的图形化英汉字典
  • 原文地址:https://www.cnblogs.com/liuwei6/p/6709931.html
Copyright © 2020-2023  润新知