给定一个字符串 s
,找到 s
中最长的回文子串。你可以假设 s
的最大长度为 1000。
方法一:动态规划
对于一个子串而言,如果它是回文串,并且长度大于2,那么将它首尾的两个字母去除之后,它仍然是个回文串
用P(i, j)表示字符串s的第i到j个字母组成的串(s[i:j])是否为回文串
P(i, j) = P(i + 1, j - 1)^(Si == Sj)
P(i, i) = True
P(i, i + 1) = (Si == Si+1)
=================Python=============
O(n**2) O(n**2)
class Solution: def longestPalindrome(self, s: str) -> str: dp = [[False] * len(s) for _ in range(len(s))] ans = "" #枚举子串的长度l + 1 for l in range(len(s)): #枚举子串的起始位置i,这样可以通过j = i + 1得到子串的结束位置 for i in range(len(s)): j = i + l if j >= len(s): break if l == 0: dp[i][j] = True elif l == 1: dp[i][j] = (s[i] == s[j]) else: dp[i][j] = (dp[i + 1][j - 1] and (s[i] == s[j])) if dp[i][j] and l + 1 > len(ans): ans = s[i:j + 1] return ans
方法二:中心扩展算法 O(n**2) O(1)
class Solution: def longestPalindrome(self, s: str) -> str: start, end = 0, 0 for i in range(len(s)): left1, right1 = self.expandAroundCenter(s, i, i) left2, right2 = self.expandAroundCenter(s, i, i + 1) if right1 - left1 > end - start: start, end = left1, right1 if right2 - left2 > end - start: start, end = left2, right2 return s[start: end + 1] def expandAroundCenter(self, s, left, right): while left >= 0 and right < len(s) and s[left] == s[right]: left -= 1 right += 1 return left + 1, right - 1
方法三:Manacher算法