• Eureka系列(四) 获取服务Server端具体实现


    获取服务 Server端流程

      我们先看下面这张图片,这张图片简单描述了下我们EurekaClient在调用EurekaServer 提供的获取服务Http接口,Server端实现接口执行的大致流程,图中还包含了服务注册的大致流程,因为服务注册和获取服务有关联的部分,因此两个流程合到了一起EurekaServer服务注册、获取实现.jpg


    Eureka 二级缓存

      我们先看看我们Eureka二级缓存的结构:

     // 一级缓存 只读缓存
     private final ConcurrentMap<Key, Value> readOnlyCacheMap = new ConcurrentHashMap<Key, Value>();
     // 二级缓存 读写缓存
     private final LoadingCache<Key, Value> readWriteCacheMap; 
    

      上面我们看到一级缓存是由我们jdk自带的ConcurrentHashMap实现,而我们的二级缓存却是有google提供的guava包中LoadingCache实现。我们接着看下Eureka二级缓存readWriteCacheMap的初始化:

    this.readWriteCacheMap =
              CacheBuilder.newBuilder().initialCapacity(1000)
                            .expireAfterWrite(serverConfig.getResponseCacheAutoExpirationInSeconds(), TimeUnit.SECONDS)
                            .removalListener(new RemovalListener<Key, Value>() {
                                @Override
                                public void onRemoval(RemovalNotification<Key, Value> notification) {
                                    Key removedKey = notification.getKey();
                                    if (removedKey.hasRegions()) {
                                        Key cloneWithNoRegions = removedKey.cloneWithoutRegions();
                                        regionSpecificKeys.remove(cloneWithNoRegions, removedKey);
                                    }
                                }
                            })
                            .build(new CacheLoader<Key, Value>() {
                                @Override
                                public Value load(Key key) throws Exception {
                                    if (key.hasRegions()) {
                                        Key cloneWithNoRegions = key.cloneWithoutRegions();
                                        regionSpecificKeys.put(cloneWithNoRegions, key);
                                    }
                                    Value value = generatePayload(key);
                                    return value;
                                }
                            });
    

       不太了解LoadingCache类的小伙伴可以自行百度了解下,上面的代码简单描述就是设置了缓存180s会自行过期以及如果我们调用get()方法获取数据,查询不到对应的缓存则会执行load方法,从而得到key对应的数据。


    获取服务Server端实现源码分析

      获取服务的流程就想文章顶部文章描述的,首先会去查只读(一级)缓存(前提是没有配置只读缓存为false),如果只读缓存没有对应数据,则去查读写缓存(二级)缓存,如果读写缓存也没有,则会触发LoadingCache()的load方法,从内存中读取存取的实例信息。
      下面我们通过源码再来看看整个流程:

    private final ResponseCache responseCache;
    @GET
    public Response getContainers(@PathParam("version") String version,
                                  @HeaderParam(HEADER_ACCEPT) String acceptHeader,
                                  @HeaderParam(HEADER_ACCEPT_ENCODING) String acceptEncoding,
                                  @HeaderParam(EurekaAccept.HTTP_X_EUREKA_ACCEPT) String eurekaAccept,
                                  @Context UriInfo uriInfo,
                                  @Nullable @QueryParam("regions") String regionsStr) {
    
        boolean isRemoteRegionRequested = null != regionsStr && !regionsStr.isEmpty();
        String[] regions = null;
        if (!isRemoteRegionRequested) {
            EurekaMonitors.GET_ALL.increment();
        } else {
            regions = regionsStr.toLowerCase().split(",");
            Arrays.sort(regions); // So we don't have different caches for same regions queried in different order.
            EurekaMonitors.GET_ALL_WITH_REMOTE_REGIONS.increment();
        }
        // Check if the server allows the access to the registry. The server can
        // restrict access if it is not
        // ready to serve traffic depending on various reasons.
        if (!registry.shouldAllowAccess(isRemoteRegionRequested)) {
            return Response.status(Status.FORBIDDEN).build();
        }
        CurrentRequestVersion.set(Version.toEnum(version));
        KeyType keyType = Key.KeyType.JSON;
        String returnMediaType = MediaType.APPLICATION_JSON;
        if (acceptHeader == null || !acceptHeader.contains(HEADER_JSON_VALUE)) {
            keyType = Key.KeyType.XML;
            returnMediaType = MediaType.APPLICATION_XML;
        }
        Key cacheKey = new Key(Key.EntityType.Application,
                ResponseCacheImpl.ALL_APPS,
                keyType, CurrentRequestVersion.get(), EurekaAccept.fromString(eurekaAccept), regions
        );
        Response response;
        if (acceptEncoding != null && acceptEncoding.contains(HEADER_GZIP_VALUE)) {
            // 取压缩的缓存数据
            response = Response.ok(responseCache.getGZIP(cacheKey)) 
                    .header(HEADER_CONTENT_ENCODING, HEADER_GZIP_VALUE)
                    .header(HEADER_CONTENT_TYPE, returnMediaType)
                    .build();
        } else {
            // 取缓存数据
            response = Response.ok(responseCache.get(cacheKey)) 
                    .build();
        }
        return response;
    }
    

       responseCache.getGZIP(cacheKey) 和 responseCache.get(cacheKey)方法的区别是getGZIP方法是压缩后的实例信息,但这两个方法最终都会调用getValue()方法,如下所示:

    public byte[] getGZIP(Key key) {
        Value payload = getValue(key, shouldUseReadOnlyResponseCache);
        if (payload == null) {
            return null;
        }
        return payload.getGzipped();
    }
    
    public String get(final Key key) {
        return get(key, shouldUseReadOnlyResponseCache);
    }
    
    @VisibleForTesting
    String get(final Key key, boolean useReadOnlyCache) {
        Value payload = getValue(key, useReadOnlyCache);
        if (payload == null || payload.getPayload().equals(EMPTY_PAYLOAD)) {
            return null;
        } else {
            return payload.getPayload();
        }
    }
    

     &emps;我们接着看getValue这个方法,代码如下:

    // 只读缓存,使用concurrentHashMap实现
    private final ConcurrentMap<Key, Value> readOnlyCacheMap = new ConcurrentHashMap<Key, Value>(); 
    // 读写缓存,使用google提供的LoadingCache实现
    private final LoadingCache<Key, Value> readWriteCacheMap; 
    @VisibleForTesting
    Value getValue(final Key key, boolean useReadOnlyCache) {
        Value payload = null;
        try {
            if (useReadOnlyCache) {
                final Value currentPayload = readOnlyCacheMap.get(key);
                if (currentPayload != null) {
                    payload = currentPayload;
                } else {
                    payload = readWriteCacheMap.get(key);
                    readOnlyCacheMap.put(key, payload);
                }
            } else {
                payload = readWriteCacheMap.get(key);
            }
        } catch (Throwable t) {
            logger.error("Cannot get value for key : {}", key, t);
        }
        return payload;
    }
    

       由上可见,我们获取实例信息,会先进行2次判断,判断如果是否启用了只读缓存,如果没有启用则直接从读写缓存中读取,启用了读写缓存,则我们会先尝试从读写缓存中读取数据,如果为空则从读写缓存中读取,然后再把数据put进只读缓存。
       注意:readWriteCacheMap.get(key)这个方法如果在原本的LoadingCache中查询不到数据,则会调用load方法取key对应的数据,最终返回给我们对应的数据。

       接下来我们来看看我们的只读缓存和读写缓存之间是咋进行更新的:

    ResponseCacheImpl(EurekaServerConfig serverConfig, ServerCodecs serverCodecs, AbstractInstanceRegistry registry) {
        this.serverConfig = serverConfig;
        this.serverCodecs = serverCodecs;
        // 是否使用只读缓存
        this.shouldUseReadOnlyResponseCache = serverConfig.shouldUseReadOnlyResponseCache();
        this.registry = registry;
    
        // 缓存更新的时间间隔(用定时器更新,定时器的时间默认30秒执行一次)
        long responseCacheUpdateIntervalMs = serverConfig.getResponseCacheUpdateIntervalMs();
        // 构建读写缓存 默认缓存时间180秒
        this.readWriteCacheMap =
                CacheBuilder.newBuilder().initialCapacity(1000)
                        .expireAfterWrite(serverConfig.getResponseCacheAutoExpirationInSeconds(), TimeUnit.SECONDS)
                        .removalListener(new RemovalListener<Key, Value>() {
                            @Override
                            public void onRemoval(RemovalNotification<Key, Value> notification) {
                                Key removedKey = notification.getKey();
                                if (removedKey.hasRegions()) {
                                    Key cloneWithNoRegions = removedKey.cloneWithoutRegions();
                                    regionSpecificKeys.remove(cloneWithNoRegions, removedKey);
                                }
                            }
                        })
                        // 缓存加载器,当缓存不存在时,会自动执行load方法,进行缓存加载。同时返回缓存数据
                        .build(new CacheLoader<Key, Value>() {
                            @Override
                            public Value load(Key key) throws Exception {
                                if (key.hasRegions()) {
                                    Key cloneWithNoRegions = key.cloneWithoutRegions();
                                    regionSpecificKeys.put(cloneWithNoRegions, key);
                                }
                                Value value = generatePayload(key);
                                return value;
                            }
                        });
    
        // 使用只读缓存,如果使用,此处则启动一个定时器,用来复制readWriteCacheMap 的数据至readOnlyCacheMap
        if (shouldUseReadOnlyResponseCache) {
            timer.schedule(getCacheUpdateTask(),
                    new Date(((System.currentTimeMillis() / responseCacheUpdateIntervalMs) * responseCacheUpdateIntervalMs)
                            + responseCacheUpdateIntervalMs),
                    responseCacheUpdateIntervalMs);
        }
        try {
            Monitors.registerObject(this);
        } catch (Throwable e) {
            logger.warn("Cannot register the JMX monitor for the InstanceRegistry", e);
        }
    }
    // 复制readWriteCacheMap 的数据至readOnlyCacheMap
    private TimerTask getCacheUpdateTask() {
        return new TimerTask() {
            @Override
            public void run() {
                logger.debug("Updating the client cache from response cache");
                for (Key key : readOnlyCacheMap.keySet()) {
                    if (logger.isDebugEnabled()) {
                        logger.debug("Updating the client cache from response cache for key : {} {} {} {}",
                                key.getEntityType(), key.getName(), key.getVersion(), key.getType());
                    }
                    try {
                        CurrentRequestVersion.set(key.getVersion());
                        Value cacheValue = readWriteCacheMap.get(key);
                        Value currentCacheValue = readOnlyCacheMap.get(key);
                        if (cacheValue != currentCacheValue) {
                            readOnlyCacheMap.put(key, cacheValue);
                        }
                    } catch (Throwable th) {
                        logger.error("Error while updating the client cache from response cache for key {}", key.toStringCompact(), th);
                    }
                }
            }
        };
    }
    

      由上可知,我们Server启动了两个定时任务,只读缓存定时任务使用java.util.Timer timer类实现,读写缓存是由geegle guava LoadingCache实现。只读缓存定时设置30s,即每隔30s则会读取读写缓存中数据用来更新只读缓存中的数据。而我们的读写缓存则是设置的180s过期。

  • 相关阅读:
    2019 SDN上机第五次作业
    软件工程实践作业——软件评测
    2019 SDN上机第四次作业
    2019 SDN阅读作业
    2019 SDN上机第三次作业
    2020年系统综合实践 期末大作业 19组
    2020年系统综合实践 第7次实践作业 07组
    2020年系统综合实践 第6次实践作业 07组
    2020年系统综合实践 第五次作业
    2020年系统综合实践 第四次作业
  • 原文地址:https://www.cnblogs.com/liujunj/p/13401807.html
Copyright © 2020-2023  润新知