学习了Python的决策树和TensorFlow,eclipse的Struts2架构
决策树:
import numpy as np from sklearn.tree import DecisionTreeRegressor import matplotlib.pyplot as plt # Create a random dataset rng = np.random.RandomState(1) X = np.sort(5 * rng.rand(80, 1), axis=0) y = np.sin(X).ravel() y[::5] += 3 * (0.5 - rng.rand(16)) # Fit regression model regr_1 = DecisionTreeRegressor(max_depth=2) regr_2 = DecisionTreeRegressor(max_depth=5) regr_1.fit(X, y) regr_2.fit(X, y) # Predict X_test = np.arange(0.0, 5.0, 0.01)[:, np.newaxis] y_1 = regr_1.predict(X_test) y_2 = regr_2.predict(X_test) # Plot the results plt.figure() plt.scatter(X, y, c="darkorange", label="data") plt.plot(X_test, y_1, color="cornflowerblue", label="max_depth=2", linewidth=2) plt.plot(X_test, y_2, color="yellowgreen", label="max_depth=5", linewidth=2) plt.xlabel("data") plt.ylabel("target") plt.title("Decision Tree Regression") plt.legend() plt.show()
TensorFlow:
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt import os os.environ["CUDA_VISIBLE_DEVICES"]="0" learning_rate=0.01 training_epochs=1000 display_step=50 train_X=np.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167, 7.042,10.791,5.313,7.997,5.654,9.27,3.1]) train_Y=np.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221, 2.827,3.465,1.65,2.904,2.42,2.94,1.3]) n_samples=train_X.shape[0] X=tf.placeholder("float") Y=tf.placeholder("float") W=tf.Variable(np.random.randn(),name="weight") b=tf.Variable(np.random.randn(),name='bias') pred=tf.add(tf.multiply(X,W),b) cost=tf.reduce_sum(tf.pow(pred-Y,2))/(2*n_samples) optimizer=tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) init=tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) for epoch in range(training_epochs): for (x,y) in zip(train_X,train_Y): sess.run(optimizer,feed_dict={X:x,Y:y}) if(epoch+1)%display_step==0: c=sess.run(cost,feed_dict={X:train_X,Y:train_Y}) print("Epoch:", '%04d' % (epoch + 1), "cost=", "{:.9f}".format(c),"W=",sess.run(W),"b=",sess.run(b)) training_cost=sess.run(cost,feed_dict={X:train_X,Y:train_Y}) print("Train cost=",training_cost,"W=",sess.run(W),"b=",sess.run(b)) plt.plot(train_X,train_Y,'ro',label='Original data') plt.plot(train_X,sess.run(W)*train_X+sess.run(b),label="Fitting line") plt.legend() plt.show()