• 第六周学习总结


    学习了Python的决策树和TensorFlow,eclipse的Struts2架构

    决策树:

    import numpy as np
    
    from sklearn.tree import DecisionTreeRegressor
    import matplotlib.pyplot as plt
     
    # Create a random dataset
    rng = np.random.RandomState(1)
    X = np.sort(5 * rng.rand(80, 1), axis=0)
    y = np.sin(X).ravel()
    y[::5] += 3 * (0.5 - rng.rand(16))
     
    # Fit regression model
    regr_1 = DecisionTreeRegressor(max_depth=2)
    regr_2 = DecisionTreeRegressor(max_depth=5)
    regr_1.fit(X, y)
    regr_2.fit(X, y)
     
    # Predict
    X_test = np.arange(0.0, 5.0, 0.01)[:, np.newaxis]
    y_1 = regr_1.predict(X_test)
    y_2 = regr_2.predict(X_test)
     
    # Plot the results
    plt.figure()
    plt.scatter(X, y, c="darkorange", label="data")
    plt.plot(X_test, y_1, color="cornflowerblue", label="max_depth=2", linewidth=2)
    plt.plot(X_test, y_2, color="yellowgreen", label="max_depth=5", linewidth=2)
    plt.xlabel("data")
    plt.ylabel("target")
    plt.title("Decision Tree Regression")
    plt.legend()
    plt.show()

    TensorFlow:

    import tensorflow as tf
    import numpy as np
    import matplotlib.pyplot as plt
    import os
    
    os.environ["CUDA_VISIBLE_DEVICES"]="0"
    learning_rate=0.01
    training_epochs=1000
    display_step=50
    
    train_X=np.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,
    7.042,10.791,5.313,7.997,5.654,9.27,3.1])
    train_Y=np.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,
    2.827,3.465,1.65,2.904,2.42,2.94,1.3])
    n_samples=train_X.shape[0]
    
    X=tf.placeholder("float")
    Y=tf.placeholder("float")
    
    W=tf.Variable(np.random.randn(),name="weight")
    b=tf.Variable(np.random.randn(),name='bias')
    
    pred=tf.add(tf.multiply(X,W),b)
    
    cost=tf.reduce_sum(tf.pow(pred-Y,2))/(2*n_samples)
    
    optimizer=tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
    init=tf.global_variables_initializer()
    with tf.Session() as sess:
        sess.run(init)
        for epoch in range(training_epochs):
            for (x,y) in zip(train_X,train_Y):
                sess.run(optimizer,feed_dict={X:x,Y:y})
            if(epoch+1)%display_step==0:
                c=sess.run(cost,feed_dict={X:train_X,Y:train_Y})
                print("Epoch:", '%04d' % (epoch + 1), "cost=", "{:.9f}".format(c),"W=",sess.run(W),"b=",sess.run(b))
    
        training_cost=sess.run(cost,feed_dict={X:train_X,Y:train_Y})
        print("Train cost=",training_cost,"W=",sess.run(W),"b=",sess.run(b))
    
        plt.plot(train_X,train_Y,'ro',label='Original data')
        plt.plot(train_X,sess.run(W)*train_X+sess.run(b),label="Fitting line")
        plt.legend()
        plt.show()
  • 相关阅读:
    提出贷方,提出借方
    .Net反编译工具Reflector
    通过SQL Server的位运算功能巧妙解决多选查询
    使用.NET中的XML注释(一) XML注释标签讲解
    从网络中拷贝文件xcopy
    用netsh同步网络配置
    背书
    LINUX开启允许对外访问的网络端口的命令
    PHP在线生成二维码(google api)的代码
    linux常用disk磁盘操作命令(2013最新整理)
  • 原文地址:https://www.cnblogs.com/liujinxin123/p/12594514.html
Copyright © 2020-2023  润新知