• python自动化开发-[第八天]-面向对象高级篇与网络编程


    今日概要:

      一、面向对象进阶

        1、isinstance(obj,cls)和issubclass(sub,super)

        2、__setattr__,__getattr__,__delattr__

        3、二次加工标准类型(包装/授权)

        4、__setitem__,__getitem__,__delitem__

        5、__str__,__repr__,__format

        6、__next__,__iter__实现迭代器协议

        7、__doc__

        8、__del__析构函数

        9、__enter__,__exit__

        10、__call__

        11、metaclass 元类

      二、网络编程

        1、osi七层

        2、socket是什么

        3、套接字的工作流程

        4、基于tcp的套接字

        5、基于udp的套接字

        6、recv和recvfrom的区别

        7、粘包现象

        8、socketserver解决并发

    一、面向对象进阶

     一、isinstance和issubclass

      isinstance(obj,cls)检查是否obj是否是类 cls 的对象

    例子:  

    class Foo(object):
         pass
      
    obj = Foo()
     
    isinstance(obj, Foo)
    

      

      issubclass(sub, super)检查sub类是否是 super 类的派生类 

    例子:

    class Foo:
        pass
    
    
    class Go(Foo):
        pass
    
    
    
    print(issubclass(Go,Foo))
    
    
    
    '''
    输出
    True
    
    '''  

    二、__setattr__,__getattr__,__delattr__

    #!/usr/bin/python
    # -*- coding:utf-8 -*-
    
    #特殊getattr 为 必须类的属性不存在 才执行
    class Foo:
    
        def __init__(self,x):
            self.x = x
    
        def __setattr__(self, key, value):
            self.__dict__[key] = value   #正确都使用方法
            #setattr(self,key,value) #进入无限递归
    
        def __getattr__(self, item):
            print ('getatt')
    
        def __delattr__(self, item):
            #del self.item  进入无限递归
            self.__dict__.pop(item)
    
    
    #__setattr__修改或者添加属性才会执行
    g = Foo(10)
    
    print (g.x)
    
    print(g.__dict__)  #setattr重写了,如果__setattr__什么都没写,除非直接操作属性字典,否则永远无法赋值
    
    #__delattr__删除属性才会触发
    
    g.__dict__['y'] = 2  #可以用这种方式直接修改属性字典,完成添加或修改属性的操作
    
    print (g.__dict__)
    
    
    g.xxxxxx   #使用.调用属性,但属性不存在但时候,才触发
    
    
    
    '''
    输出:
        10
        {'x': 10}
        {'x': 10, 'y': 2}
        getatt
    '''
    
    attr示例
    代码示例 

    三、二次加工标准类型(包装/授权)

      包装:python为大家提供了标准数据类型,以及丰富的内置方法,其实在很多场景下我们都需要基于标准数据类型来定制我们自己的数据类型,新增/改写方法,这就用到了我们刚学的继承/派生知识(其他的标准类型均可以通过下面的方式进行二次加工

    #继承list类的所有属性,可派生出自己新的比如append和mid方法
    class List(list):
    
        def __init__(self,item,tag=False):
            super().__init__(item)
            self.tag = tag
    
    
        def append(self, p_object):
            print ('派生都自己都属性+类型检查')
            if not isinstance(p_object,str):
                raise TypeError('%s must be str' %(p_object))
    
        def mid(self):
            print('自定义属性')
            mid_index=len(self) // 2
            return self[mid_index]
    
        def clear(self):
    
            if not self.tag :
                raise PermissionError('%s permission ')
            else:
                super().clear()
                self.tag = False
    
    
    l = List([1,2,3])
    
    print (l)
    
    l.append('4')
    print (l)
    # l.tag = True
    # l.clear()
    二次加工标准类型基于继承实现

      授权:授权是包装的一个特性, 包装一个类型通常是对已存在的类型的一些定制,这种做法可以新建,修改或删除原有产品的功能。其它的则保持原样。授权的过程,即是所有更新的功能都是由新类的某部分来处理,但已存在的功能就授权给对象的默认属性。

      实现授权的关键点就是覆盖__getattr__方法

    #!/usr/bin/python
    # -*- coding:utf-8 -*-
    import time
    
    
    class Filehandle:
        def __init__(self,filename,mode='r',encoding='utf-8'):
            self.file = open(filename,mode=mode,encoding=encoding)
    
        def write(self,line):
            t = time.strftime('%Y-%m-%d %X')
            self.file.write('%s %s' %(t,line))
    
    
        def __getattr__(self, item):
            return getattr(self.file,item)
    
    
    
    
    f1 = Filehandle('b.txt','w+',encoding='utf-8')
    
    f1.write('123123')
    
    
    #如下方法为非重写方法通过__getattr和反射 去原来的方法里查找
    f1.seek(0)
    print (f1.read())
    f1.close()
    授权例子1
    #!/usr/bin/python
    # -*- coding:utf-8 -*-
    import time
    
    #我们来加上b模式支持
    class Filehandle:
        def __init__(self,filename,mode='r',encoding='utf-8'):
            if  'b' in mode:
                self.file = open(filename,mode)
            else:
                self.file = open(filename,mode,encoding=encoding)
            self.filename = filename
            self.mode = mode
            self.encoding = encoding
    
        def write(self,line):
            if 'b' in self.mode:
                if not isinstance(line,bytes):
                    raise TypeError('must be bytes')
    
            self.file.write(line)
        def __getattr__(self, item):
            return getattr(self.file,item)
    
    
        def __str__(self):
            if 'b' in self.mode:
                res="<_io.BufferedReader name='%s'>" %self.filename
            else:
                res="<_io.TextIOWrapper name='%s' mode='%s' encoding='%s'>" %(self.filename,self.mode,self.encoding)
            return res
    
    f1 = Filehandle('c.txt','wb')
    
    f1.write('gogo你好'.encode('utf-8'))
    print (f1)
    
    f1.close()
    授权例子2 

     四、__setitem__,__getitem__,__delitem__

    #!/usr/bin/python
    # -*- coding:utf-8 -*-
    
    #应用场景:写web项目的时候,需要将字典和类的属性都用[]调用,这个时候,就需要对类进行进一步转换
    
    class Foo:
    
        def __init__(self,name):
            self.name = name
    
    
        def __getitem__(self, item):
            return  self.__dict__[item]
    
    
        def __setitem__(self, key, value):
            self.__dict__[key]=value
    
        def __delitem__(self, key):
            del self.__dict__[key]
    
    
    
    g = Foo('egon')
    
    # g['name'] = 'gogo'  #字符串形式传入
    # print(g['name'])
    #
    # del g['name']
    # print (g.__dict__)
    
    
    #没有__getitem__用判断做操作
    def func(obj,key,value):
        if isinstance(obj,dict):
            obj[key] = value
        else:
            setattr(obj,key,value)
    
    
    def func(obj,key,value):
        obj[key] = value
    
    func(g,'name','alex')
    print (g.name)
      
    

     五、__str__,__repr__,__format

      改变对象的字符串显示__str__,__repr__

      自定制格式化字符串__format__

    #__str__ #默认都会执行,只不过不用定义
    
    class Foo:
        def __init__(self,name,age):
            self.name = name
            self.age = age
        def __str__(self):
            #必须有返回值,且必须返回字符串类型
            return '<name: %s,age: %s>' %(self.name,self.age)
    
    obj = Foo('alex',18)
    print (obj)
    

      

    format_dict={
        'nat':'{obj.name}-{obj.addr}-{obj.type}',#学校名-学校地址-学校类型
        'tna':'{obj.type}:{obj.name}:{obj.addr}',#学校类型:学校名:学校地址
        'tan':'{obj.type}/{obj.addr}/{obj.name}',#学校类型/学校地址/学校名
    }
    class School:
        def __init__(self,name,addr,type):
            self.name=name
            self.addr=addr
            self.type=type
    
        def __repr__(self):
            return 'School(%s,%s)' %(self.name,self.addr)
        def __str__(self):
            return '(%s,%s)' %(self.name,self.addr)
    
        def __format__(self, format_spec):
            # if format_spec
            if not format_spec or format_spec not in format_dict:
                format_spec='nat'
            fmt=format_dict[format_spec]
            return fmt.format(obj=self)
    
    s1=School('oldboy1','北京','私立')
    print('from repr: ',repr(s1))
    print('from str: ',str(s1))
    print(s1)
    
    '''
    str函数或者print函数--->obj.__str__()
    repr或者交互式解释器--->obj.__repr__()
    如果__str__没有被定义,那么就会使用__repr__来代替输出
    注意:这俩方法的返回值必须是字符串,否则抛出异常
    '''
    print(format(s1,'nat'))
    print(format(s1,'tna'))
    print(format(s1,'tan'))
    print(format(s1,'asfdasdffd'))
    
    
    '''
    输出
    from repr:  School(oldboy1,北京)
    from str:  (oldboy1,北京)
    (oldboy1,北京)
    oldboy1-北京-私立
    私立:oldboy1:北京
    私立/北京/oldboy1
    oldboy1-北京-私立
    
    '''
    例子
    date_dic={
        'ymd':'{0.year}:{0.month}:{0.day}',
        'dmy':'{0.day}/{0.month}/{0.year}',
        'mdy':'{0.month}-{0.day}-{0.year}',
    }
    class Date:
        def __init__(self,year,month,day):
            self.year=year
            self.month=month
            self.day=day
    
        def __format__(self, format_spec):
            if not format_spec or format_spec not in date_dic:
                format_spec='ymd'
            fmt=date_dic[format_spec]
            return fmt.format(self)
    
    d1=Date(2016,12,29)
    print(format(d1))
    print('{:mdy}'.format(d1))
    
    '''
    输出
    2016:12:29
    12-29-2016
    '''

     六、__next__,__iter__实现迭代器协议

    #!/usr/bin/python
    # -*- coding:utf-8 -*-
    
    
    class Foo:
        def __init__(self,n,stop):
            self.n = n
            self.stop = stop
    
        def __next__(self):
            if self.n >= self.stop:
                raise StopIteration
            else:
                x = self.n
                self.n+=1   #执行不定义x=self.n 会直接忽略第一个数,从第二个数开始计数
                return x
    
    
        def __iter__(self):
            return  self    #迭代器的iter是他本身的原因
    
    obj = Foo(0,5)
    
    for i in obj:
        print(i)
    例子

    七、__doc__

      查看文档注释

    class Foo:
        '我是描述信息'
        pass
    
    class Bar(Foo):
        pass
    print(Bar.__doc__) #该属性无法继承给子类
    
    
    #文档信息的属性无法被继承

    八、__del__析构函数

      析构方法,当对象在内存中被释放时,自动触发执行。

      注:此方法一般无须定义,因为Python是一门高级语言,程序员在使用时无需关心内存的分配和释放,因为此工作都是交给Python解释器来执行,所以,析构函数的调用是由解释器在进行垃圾回收时自动触发执行的。

    class Foo:
    
        def __del__(self):
            print('执行我啦')
    
    f1=Foo()
    del f1
    print('------->')
    
    #输出结果
    执行我啦
    ------->

      错误情况

    class Foo:
    
        def __del__(self):
            print('执行我啦')
    
    f1=Foo()
    # del f1
    print('------->')
    
    #输出结果
    ------->
    执行我啦
    
    #因为没有del方法,但是程序已经执行完毕,定义的函数都被内存释放,所以依旧触发__del__方法

    九、__enter__,__exit__

      上下文管理协议,即with语句,为了让一个对象兼容with语句,必须在这个对象的类中声明__enter__和__exit__方法

    class Open(object):
        def __init__(self,name):
            self.name = name
    
        def __enter__(self):
            print ('with语句出现')
    
        def __exit__(self, exc_type, exc_val, exc_tb):
            print ('with代码执行完,执行我')
    
    with Open('a.txt') as f:
        print ('----->执行代码块')
    
    
    '''
    输出:
    with语句出现
    ----->执行代码块
    with代码执行完,执行我
    
    '''
    

      __exit__()中的三个参数分别代表异常类型,异常值和追溯信息,with语句中代码块出现异常,则with后的代码都无法执行

    class Open(object):
        def __init__(self,name):
            self.name = name
    
        def __enter__(self):
            print ('with语句出现')
    
        def __exit__(self, exc_type, exc_val, exc_tb):
            print ('with代码执行完,执行我')
            print (exc_tb)
            print (exc_type)
            print (exc_val)
    
    with Open('a.txt') as f:
        print ('----->执行代码块')
        raise AttributeError('错误了')
    
    print('执行结果100')  #这句话不会执行,因为抛出异常后程序就会退出
    
    
    '''
    输出
    Traceback (most recent call last):
        raise AttributeError('错误了')
    AttributeError: 错误了
    with语句出现
    ----->执行代码块
    with代码执行完,执行我
    <traceback object at 0x00698F30>
    <class 'AttributeError'>
    错误了
    
    '''
    
    class Open:
        def __init__(self,filepath,mode='r',encoding='utf-8'):
            self.filepath=filepath
            self.mode=mode
            self.encoding=encoding
    
        def __enter__(self):
            # print('enter')
            self.f=open(self.filepath,mode=self.mode,encoding=self.encoding)
            return self.f
    
        def __exit__(self, exc_type, exc_val, exc_tb):
            # print('exit')
            self.f.close()
            return True 
        def __getattr__(self, item):
            return getattr(self.f,item)
    
    with Open('a.txt','w') as f:
        print(f)
        f.write('aaaaaa')
        f.wasdf #抛出异常,交给__exit__处理,但是exit里有个 return true 所以不会抛出异常
    模拟open 

    十、__call__

      对象后面加括号执行

      注:构造方法的执行是由创建对象触发的,即:对象 = 类名() ;而对于 __call__ 方法的执行是由对象后加括号触发的,即:对象() 或者 类()()

    class Foo:
    
        def __init__(self):
            pass
        
        def __call__(self, *args, **kwargs):
    
            print('__call__')
    
    
    obj = Foo() # 执行 __init__
    obj()       # 执行 __call__
    例子

    十一、metaclass 元类

      exec的三个参数

      参数一:字符串式的命令

      参数二:全局作用域

      参数三:局部作用域

      exec会在指定的局部作用域内执行字符串内的代码,除非明确地使用global关键字

    p = "print (x)"
    g = {'x':1}
    l = {'x':2}
    
    exec (p,g,l)  #参数顺序不能被改变,局部的优先级大于全局
    

      1、元类的定义:    

      元类是类的类,是类的模板

      元类是用来控制如何创建类的,正如类是创建对象的模板一样,而元类的主要目的是为了控制类的创建行为

      元类的实例化的结果为我们用class定义的类,正如类的实例为对象(f1对象是Foo类的一个实例Foo类是 type 类的一个实例)

      type是python的一个内建元类,用来直接控制生成类,python中任何class定义的类其实都是type类实例化的对象

      

       2、用type创建类 

    #准备工作
    # 1 类名
    # 2 类的继承关系
    # 3 类体
    
    class_name = 'Chinese'
    class_bases = (object,)
    class_body = """
    def __init__(self,name):
        self.name = name
    
    def add(self):
        pass
    
    """
    
    class_dic = {}
    exec(class_body,globals(),class_dic)
    
    print (class_dic)
    
    #用type实例化出obj
    obj = type(class_name,class_bases,class_dic)
    print (obj)
    创建类

      我们看到,type 接收三个参数:

    •   第 1 个参数是字符串 ‘Foo’,表示类名

    • 第 2 个参数是元组 (object, ),表示所有的父类

    • 第 3 个参数是字典,这里是一个空字典,表示没有定义属性和方法

      补充:若Foo类有继承,即class Foo(Bar):.... 则等同于type('Foo',(Bar,),{})

      一个类没有声明自己的元类,默认他的元类就是type,除了使用元类type,用户也可以通过继承type来自定义元类(顺便我们也可以瞅一瞅元类如何控制类的创建,工作流程是什么)

      所以类实例化的流程都一样,与三个方法有关:(大前提,任何名字后加括号,都是在调用一个功能,触发一个函数的执行,得到一个返回值)

      1.obj=Foo(),会调用产生Foo的类内的__call__方法,Foo()的结果即__call__的结果
      2.调用__call__方法的过程中,先调用Foo.__new__,得到obj,即实例化的对象,但是还没有初始化
      3.调用__call__方法的过程中,如果Foo.__new__()返回了obj,再调用Foo.__init__,将obj传入,进行初始化(否则不调用Foo.__init__)
     
       总结:
    __new__更像是其他语言中的构造函数,必须有返回值,返回值就实例化的对象
    __init__只是初始化函数,必须没有返回值,仅仅只是初始化功能,并不能new创建对象

      前提注意:

      1. 在我们自定义的元类内,__new__方法在产生obj时用type.__new__(cls,*args,**kwargs),用object.__new__(cls)抛出异常:TypeError: object.__new__(Mymeta) is not safe, use type.__new__()

      2. 在我们自定义的类内,__new__方法在产生obj时用object.__new__(self)

      3、

    class Mymeta(type):
        def __call__(self, *args, **kwargs): #self=Foo,args=('egon',) kwargs={'age':18}
            #调用__new__制造对象
            # print(args,kwargs)
            obj=self.__new__(self) #Foo.__new__
            # print(obj)
            #调用__init__初始化对象
            self.__init__(obj, 'egon', age=18)
    
            #返回对象
            return obj
    class Foo(metaclass=Mymeta): #Foo=Mymeta('Foo',(object,),{}) #Mymeta.__init__(Foo,'Foo',(object,),{})
        def __init__(self,name,age):
            self.name=name
            self.age=age
        def __new__(cls, *args, **kwargs):
            return object.__new__(cls,*args,**kwargs)
    
    obj=Foo('egon',age=18) #Foo.__init__(obj,'egon',age=18)
    print(obj)
    print(obj.__dict__)
    元类制造类的过程1

      

    '''
    # __call__
    __new__
    __init__
    '''
    class Meta:
        def __call__(self, *args, **kwargs):
            #制造对象
            Mymeta.__new__
            #初始化对象
            Mymeta.__init__
    class Mymeta(type):
        def __init__(self,name,bases,dic):
            print('__init__')
            super().__init__(name,bases,dic)
        def __new__(cls, *args, **kwargs):
            # print('__new__',args)
            # print('__new__',kwargs)
            return type.__new__(cls,*args,**kwargs)
    class Foo(metaclass=Mymeta): #Foo=Mymeta('Foo',(object,),{}) #Mymeta.__init__(Foo,'Foo',(object,),{})
        pass
    元类制造类的过程

     练习:通过元类控制必须添加文档注释

    class Mymeta(type):
        def __init__(self,cls_name,cls_bases,cls_dic):
            for key,value in cls_dic.items():
                if key.startswith('__'):
                    continue
                if not callable(value):
                    continue
                if not value.__doc__:
                    raise  TypeError('请添加文档注释')
            super().__init__(cls_name,cls_bases,cls_dic)
    
    
    
    class Foo(metaclass=Mymeta):
    
        x=1
        def f1(self):
            'f1'
            print ('from f1')
        def f2(self):
            'f2'
            print ('from f2')
    
    obj = Foo()
    例子
    #单例模式,比如数据库对象,实例化时参数都一样,就没必要重复产生对象,浪费内存
    class Mysql:
        __isstance = None
        def __init__(self,hostname='127.0.0.1',port='3306'):
            self.host = hostname
            self.port = port
    
        @classmethod
        def sigle(cls,*args,**kwargs):
            if not cls.__isstance:
                cls.__isstance = cls(*args,**kwargs)
            return cls.__isstance
    
    
    f1 = Mysql()
    f2 = Mysql()
    
    print (f1 is f2)
    
    f3 = Mysql.sigle()
    f4 = Mysql.sigle()
    print (f3 is f4)
    单例模式
    #单例模式,比如数据库对象,实例化时参数都一样,就没必要重复产生对象,浪费内存
    class Mymeta(type):
        def __init__(self,name,bases,dic): #定义类Mysql时就触发
            self.__instance=None
            super().__init__(name,bases,dic)
    
        def __call__(self, *args, **kwargs): #Mysql(...)时触发
    
            if not self.__instance:
                self.__instance=object.__new__(self) #产生对象
                self.__init__(self.__instance,*args,**kwargs) #初始化对象
                #上述两步可以合成下面一步
                # self.__instance=super().__call__(*args,**kwargs)
    
            return self.__instance
    class Mysql(metaclass=Mymeta):
        def __init__(self,host='127.0.0.1',port='3306'):
            self.host=host
            self.port=port
    
    
    obj1=Mysql()
    obj2=Mysql()
    
    print(obj1 is obj2)
    
    应用:定制元类实现单例模式
    定制元类实现单例模式
    #元类总结
    class Mymeta(type):
        def __init__(self,name,bases,dic):
            print('===>Mymeta.__init__')
    
    
        def __new__(cls, *args, **kwargs):
            print('===>Mymeta.__new__')
            return type.__new__(cls,*args,**kwargs)
    
        def __call__(self, *args, **kwargs):
            print('aaa')
            obj=self.__new__(self)
            self.__init__(self,*args,**kwargs)
            return obj
    
    class Foo(object,metaclass=Mymeta):
        def __init__(self,name):
            self.name=name
        def __new__(cls, *args, **kwargs):
            return object.__new__(cls)
    
    '''
    需要记住一点:名字加括号的本质(即,任何name()的形式),都是先找到name的爹,然后执行:爹.__call__
    
    而爹.__call__一般做两件事:
    1.调用name.__new__方法并返回一个对象
    2.进而调用name.__init__方法对儿子name进行初始化
    '''
    
    '''
    class 定义Foo,并指定元类为Mymeta,这就相当于要用Mymeta创建一个新的对象Foo,于是相当于执行
    Foo=Mymeta('foo',(...),{...})
    因此我们可以看到,只定义class就会有如下执行效果
    ===>Mymeta.__new__
    ===>Mymeta.__init__
    实际上class Foo(metaclass=Mymeta)是触发了Foo=Mymeta('Foo',(...),{...})操作,
    遇到了名字加括号的形式,即Mymeta(...),于是就去找Mymeta的爹type,然后执行type.__call__(...)方法
    于是触发Mymeta.__new__方法得到一个具体的对象,然后触发Mymeta.__init__方法对对象进行初始化
    '''
    
    '''
    obj=Foo('egon')
    的原理同上
    '''
    
    '''
    总结:元类的难点在于执行顺序很绕,其实我们只需要记住两点就可以了
    1.谁后面跟括号,就从谁的爹中找__call__方法执行
    type->Mymeta->Foo->obj
    Mymeta()触发type.__call__
    Foo()触发Mymeta.__call__
    obj()触发Foo.__call__
    2.__call__内按先后顺序依次调用儿子的__new__和__init__方法
    '''
    元类的总结

     练习1,把元类中控制自定义类的数据属性都变成大写

    class Mymetaclass(type):
        def __new__(cls,name,bases,attrs):
            update_attrs={}
            for k,v in attrs.items():
                if not callable(v) and not k.startswith('__'):
                    update_attrs[k.upper()]=v
                else:
                    update_attrs[k]=v
            return type.__new__(cls,name,bases,update_attrs)
    
    class Chinese(metaclass=Mymetaclass):
        country='China'
        tag='Legend of the Dragon' #龙的传人
        def walk(self):
            print('%s is walking' %self.name)
    
    
    print(Chinese.__dict__)
    '''
    {'__module__': '__main__',
     'COUNTRY': 'China', 
     'TAG': 'Legend of the Dragon',
     'walk': <function Chinese.walk at 0x0000000001E7B950>,
     '__dict__': <attribute '__dict__' of 'Chinese' objects>,                                         
     '__weakref__': <attribute '__weakref__' of 'Chinese' objects>,
     '__doc__': None}
    '''
    练习1代码

    练习二:在元类中控制自定义的类无需__init__方法

      1.元类帮其完成创建对象,以及初始化操作;

      2.要求实例化时传参必须为关键字形式,否则抛出异常TypeError: must use keyword argument for key function;

      3.key作为用户自定义类产生对象的属性,且所有属性变成大写

    class Mymetaclass(type):
        def __call__(self, *args, **kwargs):
            if args:
                raise TypeError('must use keyword argument for key function')
            obj = object.__new__(self) #创建对象,self为类Foo
    
            for k,v in kwargs.items():
                obj.__dict__[k.upper()]=v
            return obj
    
    class Chinese(metaclass=Mymetaclass):
        country='China'
        tag='Legend of the Dragon' #龙的传人
        def walk(self):
            print('%s is walking' %self.name)
    
    
    p=Chinese(name='egon',age=18,sex='male')
    print(p.__dict__)
    代码

     二、网络编程

      一、osi七层模型

                    

          各模型常见的物理设备

                    

     二、socket是什么?  

      Socket是应用层与TCP/IP协议族通信的中间软件抽象层,它是一组接口。在设计模式中,Socket其实就是一个门面模式,它把复杂的TCP/IP协议族隐藏在Socket接口后面,对用户来说,一组简单的接口就是全部,让Socket去组织数据,以符合指定的协议。

    所以,我们无需深入理解tcp/udp协议,socket已经为我们封装好了,我们只需要遵循socket的规定去编程,写出的程序自然就是遵循tcp/udp标准的。

    三、套接字的工作流程

      基本流程如图:

           

      先从服务器端说起。服务器端先初始化Socket,然后与端口绑定(bind),对端口进行监听(listen),调用accept阻塞,等待客户端连接。在这时如果有个客户端初始化一个Socket,然后连接服务器(connect),如果连接成功,这时客户端与服务器端的连接就建立了。客户端发送数据请求,服务器端接收请求并处理请求,然后把回应数据发送给客户端,客户端读取数据,最后关闭连接,一次交互结束。

    一些语法定义: 

       服务端套接字函数

    s.bind()    绑定(主机,端口号)到套接字
    s.listen() 开始TCP监听
    s.accept() 被动接受TCP客户的连接,(阻塞式)等待连接的到来

    客户端套接字函数
    s.connect() 主动初始化TCP服务器连接
    s.connect_ex() connect()函数的扩展版本,出错时返回出错码,而不是抛出异常

    公共用途的套接字函数
    s.recv() 接收TCP数据
    s.send() 发送TCP数据(send在待发送数据量大于己端缓存区剩余空间时,数据丢失,不会发完)
    s.sendall() 发送完整的TCP数据(本质就是循环调用send,sendall在待发送数据量大于己端缓存区剩余空间时,数据不丢失,循环调用send直到发完)
    s.recvfrom() 接收UDP数据
    s.sendto() 发送UDP数据
    s.getpeername() 连接到当前套接字的远端的地址
    s.getsockname() 当前套接字的地址
    s.getsockopt() 返回指定套接字的参数
    s.setsockopt() 设置指定套接字的参数
    s.close() 关闭套接字

    面向锁的套接字方法
    s.setblocking() 设置套接字的阻塞与非阻塞模式
    s.settimeout() 设置阻塞套接字操作的超时时间
    s.gettimeout() 得到阻塞套接字操作的超时时间

    面向文件的套接字的函数
    s.fileno() 套接字的文件描述符
    s.makefile() 创建一个与该套接字相关的文件

    四、基于tcp的套接字

    tcp服务端:

      

    ss = socket() #创建服务器套接字对象
    ss.bind()      #把地址绑定到套接字
    ss.listen()      #监听链接
    inf_loop:      #服务器无限循环
        cs = ss.accept() #接受客户端链接
        comm_loop:         #通讯循环
            cs.recv()/cs.send() #对话(接收与发送)
        cs.close()    #关闭客户端套接字
    ss.close()        #关闭服务器套接字(可选)
    

     tcp客户端:

    cs = socket()    # 创建客户套接字对象
    cs.connect()    # 尝试连接服务器
    comm_loop:        # 通讯循环
         cs.send()/cs.recv()    # 对话(发送/接收)
    cs.close()            # 关闭客户套接字
    

    例子:

    #!/usr/bin/python
    # -*- coding:utf-8 -*-
    
    
    import socket
    
    server = socket.socket(socket.AF_INET,socket.SOCK_STREAM)  #买手机
    
    server.bind(('127.0.0.1',8080)) #买手机卡
    
    
    server.listen(5)  #开机
    
    print ('starting')
    conn,addr = server.accept()  #接电话
    
    print (conn)
    print (addr)
    
    msg = conn.recv(1024)  #接收
    
    conn.send(msg.upper()) #发送
    
    
    conn.close()
    
    server.close()
    服务端
    #!/usr/bin/python
    # -*- coding:utf-8 -*-
    
    
    import socket
    
    client = socket.socket(socket.AF_INET,socket.SOCK_STREAM)
    
    client.connect(('127.0.0.1',8080))
    
    
    client.send('hello'.encode('utf-8'))
    
    msg = client.recv(1024)
    
    print (msg)
    
    
    
    client.close()
    客户端

       上述例子服务端只能接受一次链接,然后就彻底关闭掉了,实际情况应该是,服务端不断接受链接,然后循环通信,通信完毕后只关闭链接,服务器能够继续接收下一次链接

    import socket
    ip_port=('127.0.0.1',8081)#电话卡
    BUFSIZE=1024
    s=socket.socket(socket.AF_INET,socket.SOCK_STREAM) #买手机
    s.bind(ip_port) #手机插卡
    s.listen(5)     #手机待机
    
    
    while True:                         #新增接收链接循环,可以不停的接电话
        conn,addr=s.accept()            #手机接电话
        # print(conn)
        # print(addr)
        print('接到来自%s的电话' %addr[0])
        while True:                         #新增通信循环,可以不断的通信,收发消息
            msg=conn.recv(BUFSIZE)             #听消息,听话
    
            # if len(msg) == 0:break        #如果不加,那么正在链接的客户端突然断开,recv便不再阻塞,死循环发生
    
            print(msg,type(msg))
    
            conn.send(msg.upper())          #发消息,说话
    
        conn.close()                    #挂电话
    
    s.close()                       #手机关机
    
    服务端改进版
    改进版服务端
    import socket
    ip_port=('127.0.0.1',8081)
    BUFSIZE=1024
    s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
    
    s.connect_ex(ip_port)           #拨电话
    
    while True:                             #新增通信循环,客户端可以不断发收消息
        msg=input('>>: ').strip()
        if len(msg) == 0:continue
        s.send(msg.encode('utf-8'))         #发消息,说话(只能发送字节类型)
    
        feedback=s.recv(BUFSIZE)                           #收消息,听话
        print(feedback.decode('utf-8'))
    
    s.close()                                       #挂电话
    
    客户端改进版
    改进版客户端

    问题:

      

      这个是由于你的服务端仍然存在四次挥手的time_wait状态在占用地址(如果不懂,请深入研究1.tcp三次握手,四次挥手 2.syn洪水攻击 3.服务器高并发情况下会有大量的time_wait状态的优化方法)

     解决方法:

    #加入一条socket配置,重用ip和端口
    
    phone=socket(AF_INET,SOCK_STREAM)
    phone.setsockopt(SOL_SOCKET,SO_REUSEADDR,1) #就是它,在bind前加
    phone.bind(('127.0.0.1',8080))
    方法一
    发现系统存在大量TIME_WAIT状态的连接,通过调整linux内核参数解决,
    vi /etc/sysctl.conf
    
    编辑文件,加入以下内容:
    net.ipv4.tcp_syncookies = 1
    net.ipv4.tcp_tw_reuse = 1
    net.ipv4.tcp_tw_recycle = 1
    net.ipv4.tcp_fin_timeout = 30
     
    然后执行 /sbin/sysctl -p 让参数生效。
     
    net.ipv4.tcp_syncookies = 1 表示开启SYN Cookies。当出现SYN等待队列溢出时,启用cookies来处理,可防范少量SYN攻击,默认为0,表示关闭;
    
    net.ipv4.tcp_tw_reuse = 1 表示开启重用。允许将TIME-WAIT sockets重新用于新的TCP连接,默认为0,表示关闭;
    
    net.ipv4.tcp_tw_recycle = 1 表示开启TCP连接中TIME-WAIT sockets的快速回收,默认为0,表示关闭。
    
    net.ipv4.tcp_fin_timeout 修改系統默认的 TIMEOUT 时间
    
    方法二
    方法二

    关于socketserver方法:

    class MyThreadingTCPServer(socketserver.ThreadingTCPServer):
        '''继承socket进行bind进行修改'''
        def server_bind(self):
            self.socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
            self.socket.bind(self.server_address)
    方法一

     五、基于udp的套接字

      

    ss = socket()   #创建一个服务器的套接字
    ss.bind()       #绑定服务器套接字
    inf_loop:       #服务器无限循环
        cs = ss.recvfrom()/ss.sendto() # 对话(接收与发送)
    ss.close()                         # 关闭服务器套接字
    服务端
    cs = socket()   # 创建客户套接字
    comm_loop:      # 通讯循环
        cs.sendto()/cs.recvfrom()   # 对话(发送/接收)
    cs.close()                      # 关闭客户套接字
    客户端

    例子:

    server:

    #!/usr/bin/python
    # -*- coding:utf-8 -*-
    
    
    import socket
    ip_port=('127.0.0.1',9000)
    BUFSIZE=1024
    udp_server_client=socket.socket(socket.AF_INET,socket.SOCK_DGRAM)
    
    udp_server_client.bind(ip_port)
    
    while True:
        msg,addr=udp_server_client.recvfrom(BUFSIZE)
        print(msg,addr)
    
        udp_server_client.sendto(msg.upper(),addr)
    简单服务端
    #!/usr/bin/python
    # -*- coding:utf-8 -*-
    #_*_coding:utf-8_*_
    
    import socket
    ip_port=('127.0.0.1',9000)
    BUFSIZE=1024
    udp_server_client=socket.socket(socket.AF_INET,socket.SOCK_DGRAM)
    
    while True:
        msg=input('>>: ').strip()
        if not msg:continue
    
        udp_server_client.sendto(msg.encode('utf-8'),ip_port)
    
        back_msg,addr=udp_server_client.recvfrom(BUFSIZE)
        print(back_msg.decode('utf-8'),addr)
    简单客户端

    基于udp的qq链接

    #!/usr/bin/python
    # -*- coding:utf-8 -*-
    
    
    import socket
    ip_port=('127.0.0.1',8081)
    BUFSIZE=1024
    udp_server_client=socket.socket(socket.AF_INET,socket.SOCK_DGRAM)
    
    udp_server_client.bind(ip_port)
    
    while True:
        qq_msg,addr=udp_server_client.recvfrom(BUFSIZE)
        print('来自[%s:%s]的一条消息:33[1;44m%s33[0m' % (addr[0], addr[1], qq_msg.decode('utf-8')))
        back_msg = input('回复一条消息: ').strip()
    
        udp_server_client.sendto(back_msg.encode('utf-8'),addr)
    服务端
    import socket
    BUFSIZE=1024
    udp_client_socket=socket.socket(socket.AF_INET,socket.SOCK_DGRAM)
    
    qq_name_dic={
        '狗哥alex':('127.0.0.1',8081),
        '瞎驴':('127.0.0.1',8081),
        '一棵树':('127.0.0.1',8081),
        '武大郎':('127.0.0.1',8081),
    }
    
    
    while True:
        qq_name=input('请选择聊天对象: ').strip()
        while True:
            msg=input('请输入消息,回车发送: ').strip()
            if msg == 'quit':break
            if not msg or not qq_name or qq_name not in qq_name_dic:continue
            udp_client_socket.sendto(msg.encode('utf-8'),qq_name_dic[qq_name])
    
            back_msg,addr=udp_client_socket.recvfrom(BUFSIZE)
            print('来自[%s:%s]的一条消息:33[1;44m%s33[0m' %(addr[0],addr[1],back_msg.decode('utf-8')))
    
    udp_client_socket.close()
    客户端

    客户端发消息

    服务端发消息:

    #!/usr/bin/python
    # -*- coding:utf-8 -*-
    
    from socket import *
    from time import strftime
    
    ip_port = ('127.0.0.1', 9000)
    bufsize = 1024
    
    tcp_server = socket(AF_INET, SOCK_DGRAM)
    
    tcp_server.bind(ip_port)
    
    while True:
        msg, addr = tcp_server.recvfrom(bufsize)
        print('===>', msg)
    
        if not msg:
            time_fmt = '%Y-%m-%d %X'
        else:
            time_fmt = msg.decode('utf-8')
        back_msg = strftime(time_fmt)
    
        tcp_server.sendto(back_msg.encode('utf-8'), addr)
    
    tcp_server.close()
    时间服务器
    #!/usr/bin/python
    # -*- coding:utf-8 -*-
    #_*_coding:utf-8_*_
    
    from socket import *
    ip_port=('127.0.0.1',9000)
    bufsize=1024
    
    tcp_client=socket(AF_INET,SOCK_DGRAM)
    
    
    
    while True:
        msg=input('请输入时间格式(例%Y %m %d)>>: ').strip()
        tcp_client.sendto(msg.encode('utf-8'),ip_port)
    
        data=tcp_client.recv(bufsize)
    
        print(data.decode('utf-8'))
    
    tcp_client.close()
    时间服务器client

    六、recv和recvfrom的区别   

      ============part1:须知============   

      收发消息的原理须知晓--->请见十一的图:发消息,都是将数据发送到己端的发送缓冲中,收消息都是从己端的缓冲区中收

      1. tcp:send发消息,recv收消息

      2. udp:sendto发消息,recvfrom收消息

      ============part2:send与sendinto============

          tcp是基于数据流的,而udp是基于数据报的:

      1. send(bytes_data):发送数据流,数据流bytes_data若为空,自己这段的缓冲区也为空,操作系统不会控制tcp协议发空包
      2. sendinto(bytes_data,ip_port):发送数据报,bytes_data为空,还有ip_port,所有即便是发送空的bytes_data,数据报其实也不是空的,自己这端的缓冲区收到内容,操作系统就会控制udp协议发包。

      ============part3:recv与recvfrom============

      1.tcp协议:

      (1)如果收消息缓冲区里的数据为空,那么recv就会阻塞(阻塞很简单,就是一直在等着收)

      (2)只不过tcp协议的客户端send一个空数据就是真的空数据,客户端即使有无穷个send空,也跟没有一个样。

      (3)tcp基于链接通信

    •   基于链接,则需要listen(backlog),指定半连接池的大小
    • 基于链接,必须先运行的服务端,然后客户端发起链接请求
    • 对于mac系统:如果一端断开了链接,那另外一端的链接也跟着完蛋recv将不会阻塞,收到的是空(解决方法是:服务端在收消息后加上if判断,空消息就break掉通信循环)
    • 对于windows/linux系统:如果一端断开了链接,那另外一端的链接也跟着完蛋recv将不会阻塞,收到的是空(解决方法是:服务端通信循环内加异常处理,捕捉到异常后就break掉通讯循环)

      

      2.udp协议

      (1)如果如果收消息缓冲区里的数据为“空”,recvfrom也会阻塞

      (2)只不过udp协议的客户端sendinto一个空数据并不是真的空数据(包含:空数据+地址信息,得到的报仍然不会为空),所以客户端只要有一个sendinto(不管是否发送空数据,都不是真的空数据),服务端就可以recvfrom到数据。

      (3)udp无链接

    • 无链接,因而无需listen(backlog),更加没有什么连接池之说了
    • 无链接,udp的sendinto不用管是否有一个正在运行的服务端,可以己端一个劲的发消息,只不过数据丢失
    • recvfrom收的数据小于sendinto发送的数据时,在mac和linux系统上数据直接丢失,在windows系统上发送的比接收的大直接报错
    • 只有sendinto发送数据没有recvfrom收数据,数据丢失

      注意:

      1.你单独运行上面的udp的客户端,你发现并不会报错,相反tcp却会报错,因为udp协议只负责把包发出去,对方收不收,我根本不管,而tcp是基于链接的,必须有一个服务端先运行着,客户端去跟服务端建立链接然后依托于链接才能传递消息,任何一方试图把链接摧毁都会导致对方程序的崩溃。

      2.上面的udp程序,你注释任何一条客户端的sendinto,服务端都会卡住,为什么?因为服务端有几个recvfrom就要对应几个sendinto,哪怕是sendinto(b'')那也要有。

    七、粘包现象  

      注意注意注意:

      res=subprocess.Popen(cmd.decode('utf-8'),
      shell=True,
      stderr=subprocess.PIPE,
      stdout=subprocess.PIPE)

      的结果的编码是以当前所在的系统为准的,如果是windows,那么res.stdout.read()读出的就是GBK编码的,在接收端需要用GBK解码

      且只能从管道里读一次结果

    import socket
    import subprocess
    phone=socket.socket(socket.AF_INET,socket.SOCK_STREAM) #买手机
    phone.setsockopt(socket.SOL_SOCKET,socket.SO_REUSEADDR,1)
    phone.bind(('127.0.0.1',8080)) #插电话卡
    phone.listen(5) #开机,backlog
    while True:
        print('starting....')
        conn,addr=phone.accept()
        print('cliet addr',addr)
        while True:
            try:
                cmd=conn.recv(1024)
                if not cmd:break
                res=subprocess.Popen(cmd.decode('utf-8'),shell=True,
                                 stdout=subprocess.PIPE,
                                 stderr=subprocess.PIPE)
                err=res.stderr.read()
                if err:
                    cmd_res=err
                else:
                    cmd_res=res.stdout.read()
    
                conn.send(cmd_res) #发消息
            except Exception:
                break
        conn.close()
    phone.close()
    服务端
    #!/usr/bin/python
    # -*- coding:utf-8 -*-
    
    import socket
    phone=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
    phone.connect(('127.0.0.1',8080)) #拨通电话
    
    while True: #通信循环
        msg=input('>>: ').strip()
        if not msg:continue #防止客户端发空
        phone.send(msg.encode('utf-8')) #发消息
    
        back_msg=phone.recv(1024)
    
        print(back_msg.decode('utf-8'))
    
    phone.close()
    客户端

    基于udp永远不会发生粘包:

      

    from socket import *
    import subprocess
    
    ip_port=('127.0.0.1',9003)
    bufsize=1024
    
    udp_server=socket(AF_INET,SOCK_DGRAM)
    udp_server.bind(ip_port)
    
    while True:
        #收消息
        cmd,addr=udp_server.recvfrom(bufsize)
        print('用户命令----->',cmd)
    
        #逻辑处理
        res=subprocess.Popen(cmd.decode('utf-8'),shell=True,stderr=subprocess.PIPE,stdin=subprocess.PIPE,stdout=subprocess.PIPE)
        stderr=res.stderr.read()
        stdout=res.stdout.read()
    
        #发消息
        udp_server.sendto(stderr,addr)
        udp_server.sendto(stdout,addr)
    udp_server.close()
    服务端
    from socket import *
    ip_port=('127.0.0.1',9003)
    bufsize=1024
    
    udp_client=socket(AF_INET,SOCK_DGRAM)
    
    
    while True:
        msg=input('>>: ').strip()
        udp_client.sendto(msg.encode('utf-8'),ip_port)
    
        data,addr=udp_client.recvfrom(bufsize)
        print(data.decode('utf-8'),end='')
    客户端

    传输原理图:

      

      发送端可以是一K一K地发送数据,而接收端的应用程序可以两K两K地提走数据,当然也有可能一次提走3K或6K数据,或者一次只提走几个字节的数据,也就是说,应用程序所看到的数据是一个整体,或说是一个流(stream),一条消息有多少字节对应用程序是不可见的,因此TCP协议是面向流的协议,这也是容易出现粘包问题的原因。而UDP是面向消息的协议,每个UDP段都是一条消息,应用程序必须以消息为单位提取数据,不能一次提取任意字节的数据,这一点和TCP是很不同的。怎样定义消息呢?可以认为对方一次性write/send的数据为一个消息,需要明白的是当对方send一条信息的时候,无论底层怎样分段分片,TCP协议层会把构成整条消息的数据段排序完成后才呈现在内核缓冲区。

      例如基于tcp的套接字客户端往服务端上传文件,发送时文件内容是按照一段一段的字节流发送的,在接收方看了,根本不知道该文件的字节流从何处开始,在何处结束

      所谓粘包问题主要还是因为接收方不知道消息之间的界限,不知道一次性提取多少字节的数据所造成的。

    此外,发送方引起的粘包是由TCP协议本身造成的,TCP为提高传输效率,发送方往往要收集到足够多的数据后才发送一个TCP段。若连续几次需要send的数据都很少,通常TCP会根据优化算法把这些数据合成一个TCP段后一次发送出去,这样接收方就收到了粘包数据。

    1. TCP(transport control protocol,传输控制协议)是面向连接的,面向流的,提供高可靠性服务。收发两端(客户端和服务器端)都要有一一成对的socket,因此,发送端为了将多个发往接收端的包,更有效的发到对方,使用了优化方法(Nagle算法),将多次间隔较小且数据量小的数据,合并成一个大的数据块,然后进行封包。这样,接收端,就难于分辨出来了,必须提供科学的拆包机制。 即面向流的通信是无消息保护边界的。
    2. UDP(user datagram protocol,用户数据报协议)是无连接的,面向消息的,提供高效率服务。不会使用块的合并优化算法,, 由于UDP支持的是一对多的模式,所以接收端的skbuff(套接字缓冲区)采用了链式结构来记录每一个到达的UDP包,在每个UDP包中就有了消息头(消息来源地址,端口等信息),这样,对于接收端来说,就容易进行区分处理了。 即面向消息的通信是有消息保护边界的。
    3. tcp是基于数据流的,于是收发的消息不能为空,这就需要在客户端和服务端都添加空消息的处理机制,防止程序卡住,而udp是基于数据报的,即便是你输入的是空内容(直接回车),那也不是空消息,udp协议会帮你封装上消息头,实验略

    udp的recvfrom是阻塞的,一个recvfrom(x)必须对一个一个sendinto(y),收完了x个字节的数据就算完成,若是y>x数据就丢失,这意味着udp根本不会粘包,但是会丢数据,不可靠

    tcp的协议数据不会丢,没有收完包,下次接收,会继续上次继续接收,己端总是在收到ack时才会清除缓冲区内容。数据是可靠的,但是会粘包。

      两种情况下会发生粘包。

      发送端需要等缓冲区满才发送出去,造成粘包(发送数据时间间隔很短,数据了很小,会合到一起,产生粘包)

    #_*_coding:utf-8_*_
    __author__ = 'Linhaifeng'
    from socket import *
    ip_port=('127.0.0.1',8080)
    
    tcp_socket_server=socket(AF_INET,SOCK_STREAM)
    tcp_socket_server.bind(ip_port)
    tcp_socket_server.listen(5)
    
    
    conn,addr=tcp_socket_server.accept()
    
    
    data1=conn.recv(10)
    data2=conn.recv(10)
    
    print('----->',data1.decode('utf-8'))
    print('----->',data2.decode('utf-8'))
    
    conn.close()
    服务端
    #_*_coding:utf-8_*_
    import socket
    BUFSIZE=1024
    ip_port=('127.0.0.1',8080)
    
    s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
    res=s.connect_ex(ip_port)
    
    
    s.send('hello'.encode('utf-8'))
    s.send('feng'.encode('utf-8'))
    客户端

      接收方不及时接收缓冲区的包,造成多个包接收(客户端发送了一段数据,服务端只收了一小部分,服务端下次再收的时候还是从缓冲区拿上次遗留的数据,产生粘包)  

    from socket import *
    ip_port=('127.0.0.1',8080)
    
    tcp_socket_server=socket(AF_INET,SOCK_STREAM)
    tcp_socket_server.bind(ip_port)
    tcp_socket_server.listen(5)
    
    
    conn,addr=tcp_socket_server.accept()
    
    
    data1=conn.recv(2) #一次没有收完整
    data2=conn.recv(10)#下次收的时候,会先取旧的数据,然后取新的
    
    print('----->',data1.decode('utf-8'))
    print('----->',data2.decode('utf-8'))
    
    conn.close()
    服务端
    import socket
    BUFSIZE=1024
    ip_port=('127.0.0.1',8080)
    
    s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
    res=s.connect_ex(ip_port)
    
    
    s.send('hello feng'.encode('utf-8'))
    客户端

      拆包的发生情况

      当发送端缓冲区的长度大于网卡的MTU时,tcp会将这次发送的数据拆成几个数据包发送出去。

      补充问题一:为何tcp是可靠传输,udp是不可靠传输

      基于tcp的数据传输请参考我的另一篇文章http://www.cnblogs.com/linhaifeng/articles/5937962.html,tcp在数据传输时,发送端先把数据发送到自己的缓存中,然后协议控制将缓存中的数据发往对端,对端返回一个ack=1,发送端则清理缓存中的数据,对端返回ack=0,则重新发送数据,所以tcp是可靠的

      而udp发送数据,对端是不会返回确认信息的,因此不可靠

      补充问题二:send(字节流)和recv(1024)及sendall

      recv里指定的1024意思是从缓存里一次拿出1024个字节的数据

      send的字节流是先放入己端缓存,然后由协议控制将缓存内容发往对端,如果待发送的字节流大小大于缓存剩余空间,那么数据丢失,用sendall就会循环调用send,数据不会丢失

      解决粘包方法

      为字节流加上自定义固定长度报头,报头中包含字节流长度,然后一次send到对端,对端在接收时,先从缓存中取出定长的报头,然后再取真实数据

      struct模块 

      该模块可以把一个类型,如数字,转成固定长度的bytes

      >>> struct.pack('i',1111111111111)

      struct.error: 'i' format requires -2147483648 <= number <= 2147483647 #这个是范围

     

      

     

    import json,struct
    #假设通过客户端上传1T:1073741824000的文件a.txt
    
    #为避免粘包,必须自定制报头
    header={'file_size':1073741824000,'file_name':'/a/b/c/d/e/a.txt','md5':'8f6fbf8347faa4924a76856701edb0f3'} #1T数据,文件路径和md5值
    
    #为了该报头能传送,需要序列化并且转为bytes
    head_bytes=bytes(json.dumps(header),encoding='utf-8') #序列化并转成bytes,用于传输
    
    #为了让客户端知道报头的长度,用struck将报头长度这个数字转成固定长度:4个字节
    head_len_bytes=struct.pack('i',len(head_bytes)) #这4个字节里只包含了一个数字,该数字是报头的长度
    
    #客户端开始发送
    conn.send(head_len_bytes) #先发报头的长度,4个bytes
    conn.send(head_bytes) #再发报头的字节格式
    conn.sendall(文件内容) #然后发真实内容的字节格式
    
    #服务端开始接收
    head_len_bytes=s.recv(4) #先收报头4个bytes,得到报头长度的字节格式
    x=struct.unpack('i',head_len_bytes)[0] #提取报头的长度
    
    head_bytes=s.recv(x) #按照报头长度x,收取报头的bytes格式
    header=json.loads(json.dumps(header)) #提取报头
    
    #最后根据报头的内容提取真实的数据,比如
    real_data_len=s.recv(header['file_size'])
    s.recv(real_data_len)
    

     

    struct详细用法

    #_*_coding:utf-8_*_
    #http://www.cnblogs.com/coser/archive/2011/12/17/2291160.html
    __author__ = 'Linhaifeng'
    import struct
    import binascii
    import ctypes
    
    values1 = (1, 'abc'.encode('utf-8'), 2.7)
    values2 = ('defg'.encode('utf-8'),101)
    s1 = struct.Struct('I3sf')
    s2 = struct.Struct('4sI')
    
    print(s1.size,s2.size)
    prebuffer=ctypes.create_string_buffer(s1.size+s2.size)
    print('Before : ',binascii.hexlify(prebuffer))
    # t=binascii.hexlify('asdfaf'.encode('utf-8'))
    # print(t)
    
    
    s1.pack_into(prebuffer,0,*values1)
    s2.pack_into(prebuffer,s1.size,*values2)
    
    print('After pack',binascii.hexlify(prebuffer))
    print(s1.unpack_from(prebuffer,0))
    print(s2.unpack_from(prebuffer,s1.size))
    
    s3=struct.Struct('ii')
    s3.pack_into(prebuffer,0,123,123)
    print('After pack',binascii.hexlify(prebuffer))
    print(s3.unpack_from(prebuffer,0))

      我们可以把报头做成字典,字典里包含将要发送的真实数据的详细信息,然后json序列化,然后用struck将序列化后的数据长度打包成4个字节(4个自己足够用了)

      发送时:

      先发报头长度

      再编码报头内容然后发送

      最后发真实内容 

      接收时:

      先手报头长度,用struct取出来

      根据取出的长度收取报头内容,然后解码,反序列化

      从反序列化的结果中取出待取数据的详细信息,然后去取真实的数据内容

    import socket,struct,json
    import subprocess
    phone=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
    phone.setsockopt(socket.SOL_SOCKET,socket.SO_REUSEADDR,1) #就是它,在bind前加
    
    phone.bind(('127.0.0.1',8080))
    
    phone.listen(5)
    
    while True:
        conn,addr=phone.accept()
        while True:
            cmd=conn.recv(1024)
            if not cmd:break
            print('cmd: %s' %cmd)
    
            res=subprocess.Popen(cmd.decode('utf-8'),
                                 shell=True,
                                 stdout=subprocess.PIPE,
                                 stderr=subprocess.PIPE)
            err=res.stderr.read()
            print(err)
            if err:
                back_msg=err
            else:
                back_msg=res.stdout.read()
    
            headers={'data_size':len(back_msg)}
            head_json=json.dumps(headers)
            head_json_bytes=bytes(head_json,encoding='utf-8')
    
            conn.send(struct.pack('i',len(head_json_bytes))) #先发报头的长度
            conn.send(head_json_bytes) #再发报头
            conn.sendall(back_msg) #在发真实的内容
    
        conn.close()
    服务端
    from socket import *
    import struct,json
    
    ip_port=('127.0.0.1',8080)
    client=socket(AF_INET,SOCK_STREAM)
    client.connect(ip_port)
    
    while True:
        cmd=input('>>: ')
        if not cmd:continue
        client.send(bytes(cmd,encoding='utf-8'))
    
        head=client.recv(4)
        head_json_len=struct.unpack('i',head)[0]
        head_json=json.loads(client.recv(head_json_len).decode('utf-8'))
        data_len=head_json['data_size']
    
        recv_size=0
        recv_data=b''
        while recv_size < data_len:
            recv_data+=client.recv(1024)
            recv_size+=len(recv_data)
    
        print(recv_data.decode('utf-8'))
        #print(recv_data.decode('gbk')) #windows默认gbk编码
    
    客户端
    客户端

    FTP例子:

      

    import socket
    import struct
    import json
    import subprocess
    import os
    
    class MYTCPServer:
        address_family = socket.AF_INET
    
        socket_type = socket.SOCK_STREAM
    
        allow_reuse_address = False
    
        max_packet_size = 8192
    
        coding='utf-8'
    
        request_queue_size = 5
    
        server_dir='file_upload'
    
        def __init__(self, server_address, bind_and_activate=True):
            """Constructor.  May be extended, do not override."""
            self.server_address=server_address
            self.socket = socket.socket(self.address_family,
                                        self.socket_type)
            if bind_and_activate:
                try:
                    self.server_bind()
                    self.server_activate()
                except:
                    self.server_close()
                    raise
    
        def server_bind(self):
            """Called by constructor to bind the socket.
            """
            if self.allow_reuse_address:
                self.socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
            self.socket.bind(self.server_address)
            self.server_address = self.socket.getsockname()
    
        def server_activate(self):
            """Called by constructor to activate the server.
            """
            self.socket.listen(self.request_queue_size)
    
        def server_close(self):
            """Called to clean-up the server.
            """
            self.socket.close()
    
        def get_request(self):
            """Get the request and client address from the socket.
            """
            return self.socket.accept()
    
        def close_request(self, request):
            """Called to clean up an individual request."""
            request.close()
    
        def run(self):
            while True:
                self.conn,self.client_addr=self.get_request()
                print('from client ',self.client_addr)
                while True:
                    try:
                        head_struct = self.conn.recv(4)
                        if not head_struct:break
    
                        head_len = struct.unpack('i', head_struct)[0]
                        head_json = self.conn.recv(head_len).decode(self.coding)
                        head_dic = json.loads(head_json)
    
                        print(head_dic)
                        #head_dic={'cmd':'put','filename':'a.txt','filesize':123123}
                        cmd=head_dic['cmd']
                        if hasattr(self,cmd):
                            func=getattr(self,cmd)
                            func(head_dic)
                    except Exception:
                        break
    
        def put(self,args):
            file_path=os.path.normpath(os.path.join(
                self.server_dir,
                args['filename']
            ))
    
            filesize=args['filesize']
            recv_size=0
            print('----->',file_path)
            with open(file_path,'wb') as f:
                while recv_size < filesize:
                    recv_data=self.conn.recv(self.max_packet_size)
                    f.write(recv_data)
                    recv_size+=len(recv_data)
                    print('recvsize:%s filesize:%s' %(recv_size,filesize))
    
    
    tcpserver1=MYTCPServer(('127.0.0.1',8080))
    
    tcpserver1.run()
    服务端
    import socket
    import struct
    import json
    import os
    
    
    
    class MYTCPClient:
        address_family = socket.AF_INET
    
        socket_type = socket.SOCK_STREAM
    
        allow_reuse_address = False
    
        max_packet_size = 8192
    
        coding='utf-8'
    
        request_queue_size = 5
    
        def __init__(self, server_address, connect=True):
            self.server_address=server_address
            self.socket = socket.socket(self.address_family,
                                        self.socket_type)
            if connect:
                try:
                    self.client_connect()
                except:
                    self.client_close()
                    raise
    
        def client_connect(self):
            self.socket.connect(self.server_address)
    
        def client_close(self):
            self.socket.close()
    
        def run(self):
            while True:
                inp=input(">>: ").strip()
                if not inp:continue
                l=inp.split()
                cmd=l[0]
                if hasattr(self,cmd):
                    func=getattr(self,cmd)
                    func(l)
    
    
        def put(self,args):
            cmd=args[0]
            filename=args[1]
            if not os.path.isfile(filename):
                print('file:%s is not exists' %filename)
                return
            else:
                filesize=os.path.getsize(filename)
    
            head_dic={'cmd':cmd,'filename':os.path.basename(filename),'filesize':filesize}
            print(head_dic)
            head_json=json.dumps(head_dic)
            head_json_bytes=bytes(head_json,encoding=self.coding)
    
            head_struct=struct.pack('i',len(head_json_bytes))
            self.socket.send(head_struct)
            self.socket.send(head_json_bytes)
            send_size=0
            with open(filename,'rb') as f:
                for line in f:
                    self.socket.send(line)
                    send_size+=len(line)
                    print(send_size)
                else:
                    print('upload successful')
    
    
    
    
    client=MYTCPClient(('127.0.0.1',8080))
    
    client.run()
    
    客户端
    客户端

    八、socketserver解决并发

    例子:

    import socketserver
    import struct
    import json
    import os
    class FtpServer(socketserver.BaseRequestHandler):
        coding='utf-8'
        server_dir='file_upload'
        max_packet_size=1024
        BASE_DIR=os.path.dirname(os.path.abspath(__file__))
        def handle(self):
            print(self.request)
            while True:
                data=self.request.recv(4)
                data_len=struct.unpack('i',data)[0]
                head_json=self.request.recv(data_len).decode(self.coding)
                head_dic=json.loads(head_json)
                # print(head_dic)
                cmd=head_dic['cmd']
                if hasattr(self,cmd):
                    func=getattr(self,cmd)
                    func(head_dic)
        def put(self,args):
            file_path = os.path.normpath(os.path.join(
                self.BASE_DIR,
                self.server_dir,
                args['filename']
            ))
    
            filesize = args['filesize']
            recv_size = 0
            print('----->', file_path)
            with open(file_path, 'wb') as f:
                while recv_size < filesize:
                    recv_data = self.request.recv(self.max_packet_size)
                    f.write(recv_data)
                    recv_size += len(recv_data)
                    print('recvsize:%s filesize:%s' % (recv_size, filesize))
    
    
    ftpserver=socketserver.ThreadingTCPServer(('127.0.0.1',8080),FtpServer)
    ftpserver.serve_forever()
    server端
    import socket
    import struct
    import json
    import os
    
    
    
    class MYTCPClient:
        address_family = socket.AF_INET
    
        socket_type = socket.SOCK_STREAM
    
        allow_reuse_address = False
    
        max_packet_size = 8192
    
        coding='utf-8'
    
        request_queue_size = 5
    
        def __init__(self, server_address, connect=True):
            self.server_address=server_address
            self.socket = socket.socket(self.address_family,
                                        self.socket_type)
            if connect:
                try:
                    self.client_connect()
                except:
                    self.client_close()
                    raise
    
        def client_connect(self):
            self.socket.connect(self.server_address)
    
        def client_close(self):
            self.socket.close()
    
        def run(self):
            while True:
                inp=input(">>: ").strip()
                if not inp:continue
                l=inp.split()
                cmd=l[0]
                if hasattr(self,cmd):
                    func=getattr(self,cmd)
                    func(l)
    
    
        def put(self,args):
            cmd=args[0]
            filename=args[1]
            if not os.path.isfile(filename):
                print('file:%s is not exists' %filename)
                return
            else:
                filesize=os.path.getsize(filename)
    
            head_dic={'cmd':cmd,'filename':os.path.basename(filename),'filesize':filesize}
            print(head_dic)
            head_json=json.dumps(head_dic)
            head_json_bytes=bytes(head_json,encoding=self.coding)
    
            head_struct=struct.pack('i',len(head_json_bytes))
            self.socket.send(head_struct)
            self.socket.send(head_json_bytes)
            send_size=0
            with open(filename,'rb') as f:
                for line in f:
                    self.socket.send(line)
                    send_size+=len(line)
                    print(send_size)
                else:
                    print('upload successful')
    
    
    
    
    client=MYTCPClient(('127.0.0.1',8080))
    
    client.run()
    client端

    九、认证端链接合法性

      hmac+加盐方式实现

    #_*_coding:utf-8_*_
    
    from socket import *
    import hmac,os
    
    secret_key=b'linhaifeng bang bang bang'
    def conn_auth(conn):
        '''
        认证客户端链接
        :param conn:
        :return:
        '''
        print('开始验证新链接的合法性')
        msg=os.urandom(32)
        conn.sendall(msg)
        h=hmac.new(secret_key,msg)
        digest=h.digest()
        respone=conn.recv(len(digest))
        return hmac.compare_digest(respone,digest)
    
    def data_handler(conn,bufsize=1024):
        if not conn_auth(conn):
            print('该链接不合法,关闭')
            conn.close()
            return
        print('链接合法,开始通信')
        while True:
            data=conn.recv(bufsize)
            if not data:break
            conn.sendall(data.upper())
    
    def server_handler(ip_port,bufsize,backlog=5):
        '''
        只处理链接
        :param ip_port:
        :return:
        '''
        tcp_socket_server=socket(AF_INET,SOCK_STREAM)
        tcp_socket_server.bind(ip_port)
        tcp_socket_server.listen(backlog)
        while True:
            conn,addr=tcp_socket_server.accept()
            print('新连接[%s:%s]' %(addr[0],addr[1]))
            data_handler(conn,bufsize)
    
    if __name__ == '__main__':
        ip_port=('127.0.0.1',9999)
        bufsize=1024
        server_handler(ip_port,bufsize)
    
    服务端
    服务端
    #_*_coding:utf-8_*_
    __author__ = 'Linhaifeng'
    from socket import *
    import hmac,os
    
    secret_key=b'linhaifeng bang bang bang'
    def conn_auth(conn):
        '''
        验证客户端到服务器的链接
        :param conn:
        :return:
        '''
        msg=conn.recv(32)
        h=hmac.new(secret_key,msg)
        digest=h.digest()
        conn.sendall(digest)
    
    def client_handler(ip_port,bufsize=1024):
        tcp_socket_client=socket(AF_INET,SOCK_STREAM)
        tcp_socket_client.connect(ip_port)
    
        conn_auth(tcp_socket_client)
    
        while True:
            data=input('>>: ').strip()
            if not data:continue
            if data == 'quit':break
    
            tcp_socket_client.sendall(data.encode('utf-8'))
            respone=tcp_socket_client.recv(bufsize)
            print(respone.decode('utf-8'))
        tcp_socket_client.close()
    
    if __name__ == '__main__':
        ip_port=('127.0.0.1',9999)
        bufsize=1024
        client_handler(ip_port,bufsize)
    合法客户端
    #_*_coding:utf-8_*_
    
    from socket import *
    
    def client_handler(ip_port,bufsize=1024):
        tcp_socket_client=socket(AF_INET,SOCK_STREAM)
        tcp_socket_client.connect(ip_port)
    
        while True:
            data=input('>>: ').strip()
            if not data:continue
            if data == 'quit':break
    
            tcp_socket_client.sendall(data.encode('utf-8'))
            respone=tcp_socket_client.recv(bufsize)
            print(respone.decode('utf-8'))
        tcp_socket_client.close()
    
    if __name__ == '__main__':
        ip_port=('127.0.0.1',9999)
        bufsize=1024
        client_handler(ip_port,bufsize)
    
    客户端(非法:不知道加密方式)
    非法不知道加密方式
    #_*_coding:utf-8_*_
    
    from socket import *
    import hmac,os
    
    secret_key=b'linhaifeng bang bang bang1111'
    def conn_auth(conn):
        '''
        验证客户端到服务器的链接
        :param conn:
        :return:
        '''
        msg=conn.recv(32)
        h=hmac.new(secret_key,msg)
        digest=h.digest()
        conn.sendall(digest)
    
    def client_handler(ip_port,bufsize=1024):
        tcp_socket_client=socket(AF_INET,SOCK_STREAM)
        tcp_socket_client.connect(ip_port)
    
        conn_auth(tcp_socket_client)
    
        while True:
            data=input('>>: ').strip()
            if not data:continue
            if data == 'quit':break
    
            tcp_socket_client.sendall(data.encode('utf-8'))
            respone=tcp_socket_client.recv(bufsize)
            print(respone.decode('utf-8'))
        tcp_socket_client.close()
    
    if __name__ == '__main__':
        ip_port=('127.0.0.1',9999)
        bufsize=1024
        client_handler(ip_port,bufsize)
    非法不知道(secret_key)
  • 相关阅读:
    vue里的样式添加之类名改动 和style改动
    vue里的样式添加之行间样式
    vue 里filter的基本用法
    Binary Tree Inorder Traversal
    Course Schedule 解答
    Topological Sorting
    Maximum Depth of Binary Tree 解答
    Clone Graph 解答
    Java Keyword -- super
    Binary Tree Zigzag Level Order Traversal 解答
  • 原文地址:https://www.cnblogs.com/liujiliang/p/7047055.html
Copyright © 2020-2023  润新知