• 回归分析_L1正则化(LASSO回归)【python实现】


    对于2个变量的样本回归分析,L2和L1正则化基本相同,仅仅正则化项不同
    LASSO回归为在损失函数加入(||omega||_1) ,(omega) 的1范数 而 岭回归为(||omega||_2^2)(omega) 的2范数
    *矩阵、向量范数
    *L1正则化(岭回归)

    LASSO Regression

    Loss Function

    [J(omega)= (X omega - Y)^T(X omega - Y) + lambda ||omega||_1 ]

    (||omega||_1)导数不连续,采用坐标下降法求(omega)
    坐标下降法推导过程

    import numpy as np 
    import matplotlib.pyplot as plt 
    from mpl_toolkits.mplot3d import Axes3D
    M = 3 #变量个数+1 变量加 偏移项b, 一个3个参数
    N = 50 #样本个数
    #随机生成两个属性的N个样本
    feature1 = np.random.rand(N)*10
    feature2 = np.random.rand(N)*10
    splt = np.ones((1, N))
    #
    temp_X1 = np.row_stack((feature1, feature2))
    temp_X = np.vstack((temp_X1, splt))
    X_t = np.mat(temp_X)
    X = X_t.T 
    temp_Y = np.random.rand(N)*10
    Y_t = np.mat(temp_Y)
    Y = Y_t.T 
    #画样本散点图
    fig = plt.figure()
    ax1 = Axes3D(fig)
    ax1.scatter(feature1, feature2, temp_Y)
    ######
    def errors(X, Y, Omega) :
        err = (X*Omega - Y).T*(X*Omega - Y)
        return err
    #坐标下降算法
    def lasso_regression(X, Y, lambd, threshold):
        #
        Omega = np.mat(np.zeros((M, 1)))
        err = errors(X, Y, Omega)
        counts = 0          #统计迭代次数
        # 使用坐标下降法优化回归系数Omega
        while err > threshold:
            counts += 1
            for k in range(M):
                # 计算常量值z_k和p_k
                z_k = (X[:, k].T*X[:, k])[0, 0]
                p_k = 0
                for i in range(N):
                    p_k += X[i, k]*(Y[i, 0] - sum([X[i, j]*Omega[j, 0] for j in range(M) if j != k]))
                if p_k < -lambd/2:
                    w_k = (p_k + lambd/2)/z_k
                elif p_k > lambd/2:
                    w_k = (p_k - lambd/2)/z_k
                else:
                    w_k = 0
                Omega[k, 0] = w_k
            err_prime = errors(X, Y, Omega)
            delta = abs(err_prime - err)[0, 0]
            err = err_prime
            print('Iteration: {}, delta = {}'.format(counts, delta))
            if delta < threshold:
                break
        return Omega
    #求Omega
    lambd = 10.0
    threshold = 0.1
    Omega = lasso_regression(X, Y, lambd, threshold)
    #画分回归平面
    xx = np.linspace(0,10, num=50)
    yy = np.linspace(0,10, num=50)
    xx_1, yy_1 = np.meshgrid(xx, yy)
    Omega_h = np.array(Omega.T)
    zz_1 = Omega_h[0, 0]*xx_1 + Omega_h[0, 1]*yy_1 + Omega_h[0, 2]
    ax1.plot_surface(xx_1, yy_1, zz_1, alpha= 0.6, color= "r")
    plt.show()
    

    效果

    参考资料

    机器学习算法实践-岭回归和LASSO

    坚持
  • 相关阅读:
    【Other】申请免费的SSL证书及部署Https协议
    【MySql】mysql-5.7.20-winx64安装配置
    【CSharp】C#程序使用.NET Reactor进行混淆加壳
    【Linux】Ubuntu安装Python3
    【Linux】Ubuntu安装Googlepinyin中文输入法
    【Linux】Ubuntu修改默认源
    【C/S】FIPS安全验证问题
    【Android】apk文件反编译
    笔记之《用python写网络爬虫》
    memcache (持续了解ing...)
  • 原文地址:https://www.cnblogs.com/liudianfengmang/p/12811642.html
Copyright © 2020-2023  润新知