• 回归分析_L2正则化(岭回归)【python实现】


    样本

    [x_i=(x_{i1};x_{i2}; ...; x_{im}) \, {函数值 y_i} ]

    每个样本有m个变量

    回归面

    [f(x_i) = x_i^T omega +b ]

    (omega = (omega_1; omega_2; ...; omega_m))

    [hat x_i=(x_{i1};x_{i2}; ...; x_{im}; 1) ]

    [hat omega = (omega_1; omega_2; ...; omega_m; b) ]

    [f(x_i) = hat x_i^T hat omega ]

    假设有n个样本令

    [X = [hat x_1^T; hat x_2^T; ..., hat x_n^T] ]

    则均方误差为

    [frac 1n (X hat omega - Y)^T (X hat omega - Y) ]

    其中(Y = (y_1; y_2; ...; y_n))
    损失函数

    [J(hat omega^*) = (X hat omega^* - Y)^T (Xhat omega^* - Y) ]

    [left. frac{{ m d} J(hat omega^*)}{{ m d} hat omega^*} = 0 ight. ]

    [hat omega^* = (X^TX)^{-1}X^TY ]

    当样本变量较多,样本数量不足时(m>n), (hat omega^*)解不唯一

    L2正则化

    引入对于(hat omega^*)的L2正则化项

    [hat J(hat omega^*) = (X hat omega^* - Y)^T (Xhat omega^* - Y) + frac{lambda}{2} ||hat omega^*||_2^2 ]

    可以发现,正则化项为(hat omega^*)二范数平方,乘以(frac{lambda}{2})
    (lambda)用于控制正则化项和均方误差的权重

    [left. frac{{ m d} hat J(hat omega^*)}{{ m d} hat omega^*} = 0 ight. ]

    [hat omega^* = (X^TX + frac{lambda}{2}I)^{-1}X^TY ]

    python程序

    import numpy as np 
    import matplotlib.pyplot as plt 
    from mpl_toolkits.mplot3d import Axes3D
    #随机生成两个变量的N个样本
    N = 50
    feature1 = np.random.rand(N)*10
    feature2 = np.random.rand(N)*10
    splt = np.ones((1, N))
    #
    temp_X1 = np.row_stack((feature1, feature2))
    temp_X = np.vstack((temp_X1, splt))
    X_t = np.mat(temp_X)
    X = X_t.T 
    temp_Y = np.random.rand(N)*10
    Y_t = np.mat(temp_Y)
    Y = Y_t.T 
    #画样本散点图
    fig = plt.figure()
    ax1 = Axes3D(fig)
    ax1.scatter(feature1, feature2, temp_Y)
    #求Omega
    Lbd = 0.01 #确定lambda
    I_11 = np.eye(2)
    I_12 = np.zeros((2, 1))
    I_2 = np.zeros((1, 3))
    I_t1 = np.hstack((I_11, I_12))
    I_t = np.vstack((I_t1, I_2))
    I = np.mat(I_t)
    Omega = (X.T*X + Lbd/2*I).I*X.T*Y
    #画分回归面
    xx = np.linspace(0,10, num=50)
    yy = np.linspace(0,10, num=50)
    xx_1, yy_1 = np.meshgrid(xx, yy)
    Omega_h = np.array(Omega.T)
    
    zz_1 = Omega_h[0, 0]*xx_1 + Omega_h[0, 1]*yy_1 + Omega_h[0, 2]
    ax1.plot_surface(xx_1, yy_1, zz_1, alpha= 0.6, color= "r")
    plt.show()
    

    效果

    岭回归

    参考

    线性回归正则化
    三维绘图

    坚持
  • 相关阅读:
    hdu 1108 最小公倍数
    hdu 1106 排序
    hdu 1097 A hard puzzle
    hdu 1076 An Easy Task
    hdu 1064 Financial Management
    hdu 1061 Rightmost Digit
    hdu 1050 Moving Tables
    hdu 1060 Leftmost Digit
    hdu 1049 Climbing Worm
    hdu1104
  • 原文地址:https://www.cnblogs.com/liudianfengmang/p/12809834.html
Copyright © 2020-2023  润新知